
A Continuation based Programming Language for

Embedded Systems

Shinji Kono E-Mail: kono@ie.u-ryukyu.ac.jp

Information Engineering, University of the Ryukyus,

PRESTO, Japan Science and Technology Corporation

Abstract

To solve the gap between hardware and software, continuation based languages are

introduced. C with Continuation is a super set of C, which supports light weight contin-

uation. C based Continuation is a subset of C which has no function call. Using light

weight continucation, state machine and stack machines are programmed in uniform.

1 Gap between Programming Lan-

guage and System Description

Today, we have to develop various kind of

things from very small one to very big one. Big

or small, the systems require complex functions

such as complex user interface or i-mode inter-

face in mobile phones. These systems are com-

bination of hardware description of ASIC and

software (assembler or C). Some system fea-

tures new CPU or modified CPU. It requires

assembly language level descriptions or a new

compiler. These modifications are of course sys-

tem dependent.

On the other hands, the state of the art of

programming languages such as C++ or Java

are Object oriented and featuring complex se-

mantics such as message passing with inheri-

tance and protection. These features are use-

ful for dynamic systems. But embedded system

are usually used in stable environment. Even in

large systems, most computations are routine

works or predicted events. Less than 0.1In this

situation, object oriented computation does not

work well.

The situation is this. Both hardware and soft-

ware become complex towards different direc-

tions. (fig.1)

L a r g e , C o m p l e xC PUN e w i n s t r u c t i o n sM a c h i n e L a n g u ag eC o m p l e x , H e a n yP r o g r a m m i n g L a n g u a ge
Fig1 Gap between Hardware and Software

In case of C++ or Java, small objects cre-

ations and automatic destructions are essential.

It requires huge amount of temporal memory

such as stacks. This is not allowed in small em-

bedded system. Even in a large system, this

causes performance problem both in CPU time

and memory space, which affects power con-

sumption and system costs.

Unlike large system in very high performance

computer, embedded systems require fine tun-

ing. Java people said, ”It’s Ok. Computer be-

comes faster and larger.” Or they say complex

compiler solves without any directive. This is

unlikely true in embedded systems. There is

not time to waiting fast JVM or complex com-

—1—

piler for special hardware. Manual or automatic

fine tunings are sometimes required. But many

developers find out the outputs of C++ are too

complex.

What we really need in embedded systems

are not nice object oriented language, but good

small language; something in between C and

Verilog.

2 Gap between a State Machine

and a Stack Machine

Main difference between Hardware descrip-

tion language and Programming language is a

notion of stack. Usually stack is hidden in a

syntax of a programming language. But it is

completely lacked in Hardware description lan-

guage. In a hardware description, a stack is an

external elements; a register and memories.

An implementation of a Programming lan-

guages requires stack machine. Stacks are used

to hide local variables in nested function call.

This is necessary to make the program readable.

But these local variables are visible from a view

point of execution. In other words, nested local

variables are exists only for human readability.

Stack behavior is very difficult to estimate. If

it is not fit within cache or register window, the

penalty is very big and it may happens repeat-

edly. (fig.2)

R e g i s t e r W i n d o w o r C a c h e
S t a c k D ep t h

Fig2 Stack Behavior

In normal programming languages, both func-

tion calls and message passing are implemented

in terms of stacks. But a hardware is usually

implemented on a set of finite state machine.

Since an embedded system is closer to a hard-

ware than a software, state machine description

is preferable. But conventional programming

languages are not suitable for state machine de-

scriptions.

In this paper, we introduce a continuation

based language, which becomes a bridge be-

tween a State Machine and a Stack Machine.

3 Light Weight Continuation

Continuation is introduced in early 70’s by

Baker [3]. In stead of memorizing return address

in a stack, a continuation directly points the ad-

dress where the answer should be sent. (fig.3)

C o n t i n u a t i o nC l a s s i c a l R e t u r n O b j EO b j DO b j CO b j BO b j A
Fig3 Continuation

There are several implementations of Contin-

uation. Scheme uses call/cc function call. It

also possible to store a continuation in a global

variable. In C, a combination of setjmp and

longjmp is a continuation. It is also called

catch/throw or try/throw. These are basically

used to handle exceptions. This is because it

have to handle complex stack structure or so

called environment.

An environment are accumulation of locally

scoped variables. The size of environments are

system dependent but usually 100kbytes to 1

Mbytes. Stack is used to implement an envi-

ronment. For example, in case of thread li-

brary, each thread requires an environment. Im-

plementing Continuation requires handling of

these environments. Copying entire registers

into stack in order, make it available for other

functions. This makes continuations more ex-

pensive than function calls.

But the idea of continuation is independent

from stack machine. If we don’t use stacks,

—2—

Continuation is a jump instruction. Everybody

knows a jump is faster than a call in an as-

semble language. Continuation without envi-

ronment operations is very fast. We can call it

light weight continuation.

4 C with Continuation

C with Continuation is an extension of C,

which supports light weight continuation.

code fact(int n,int result,

code (*print)()){

if(n>0){

result *= n;

n--;

goto fact(n,result,print);

} else

goto *(print)(result);

}

code is a basic unit of this language. Since

it does not handle stack, we cannot call code

from C functions. But it can be entered by goto

statement. code also has no return statement.

This language has two type of goto state-

ments.

• direct goto

• indirect goto

Since this is an extension of C language, codes

and C functions can be mixed. In order to han-

dle the environment of C language, we also have

new builtin variable and a goto statement.

return return address, or light weight con-

tinuation of current environment

environment top of the stack, or the envi-

ronment itself

goto-with-environment equivalent of C

return statement

code target(int n,code (*exit1)(),

void *exit1env)

{

...

printf("err %d!\n",n);

goto (*exit1)(0),exit1env;

...

}

int main(int ac, char *av[])

{

int n;

n = atoi(av[1]);

goto target(n,return,environment);

}

In this example, return address and environ-

ment are passed as arguments of goto state-

ment. In the code target, goto with environ-

ment returns to the caller of main.

The arguments of code are called interface of

code. These are partially allocated in registers

and the rest of arguments are stored in a stack.

goto with the same interface is guaranteed to

compiled into a jump instruction. Unlike func-

tion calls, the stack does not glow in goto state-

ments. (fig.4)

In a sentence, C with Continuation is a lan-

guage which has parameterized goto statements.

Here after we call it CwC.

H e a p D ep t h R e g i s t e r W i n d o w o r C a c h eS t a c k D ep t h
Fig4 Continuation Behavior

5 State Machine description in

CwC

It is very easy to implement State Machines

in CwC. It is also faster than table driven im-

plementation such as Yacc or lex. Instead of us-

ing indirect table jump, we can use simple goto

statement.

There are many Virtual Stack Machine im-

plementation in C. These are usually using very

large switch statements.

for(;;) {

switch(instruction) {

case ALOAD:

aload(); break;

case GETFIELD:

getfield(); break;

—3—

...

}

}

aload() {

...

return;

}

In this case, we don’t have to use auction call

for aload(). But it is not allowed without very

large switch statement. This is not readable and

this is not easy to maintenance and it is not easy

to compile. In CwC, we can write as follows

without any execution penalty.

code execute() {

switch(instruction) {

case ALOAD: goto aload();

case GETFIELD: goto getfield();

...

}

}

code aload() {

...

goto execute();

}

In modern CPUs, a fixed jump statement is

pre-fetched and it is executed without clock con-

sumption.

5.1 Small Working Set

code element requires very few stack. Of

course a programmer can write int a[1000] in

the interface, but it is very easy to predict the

max size. Usually stack size predication is very

difficult in C language, but in CwC, the max

size of interface is the max stack size.

5.2 Natural Goto Structure

CwC’s code is considered as a unit of thread.

It is not necessary to use thread library such as

POSIX thread.

Instead of using thread, we can write simple

scheduler in CwC itself. For example, if have

several TV game objects, a scheduler perform

goto statement with a continuation to the sched-

uler. (fig.5)

If game objects are connected with links like

a list, we can write goto statement to the linked

object as a simple scheduler. There is no

penalty of function call nor complex thread cre-

ation library call.

goto

goto goto goto goto

goto

game

game

object1

game

object2

game

object3

game

object4

game

object5

ob1

game
ob2

game
ob3

Scheduler

Fig5 Goto Structure

5.3 Interface Consistency

The arguments in parameterized goto in CwC

is called interface. The only important lan-

guage constraint in CwC is consistency of the

interfaces. If interfaces are consistent, assem-

bler language or hardware implementation can

be mixed. In stead of modifying compiler out-

puts, the replacement of code implementation

is enough.

5.4 As a universal intermediate lan-

guage

code can be used as a compiler targets. In

compiler technology basic unit is a set of opera-

tion between conditional jump or function call.

code is a basic unit in this sense. If CwC is used

as a compiler targets, it is considered as an ar-

chitecture independent assembler language.

If the compiler outputs no loop or no function

call in the code, writing code compiler is easier

then full set of C. The optimization of basic unit

level can be done before the CwC compiler.

It is also easy to write tail-optimization base

compiler for CwC. Writing LISP compiler or

Prolog compiler is very difficult in C, but in

CwC, it is straight forward.

5.5 As a lower language of C

We are designing C based Continuation

—4—

(CbC); a subset of CwC.

• without function call

• without loop structure

CwC can be compiled into CbC, which is a

subset of C. Since stack is easily simulated with

in CbC’s parameterized goto statements, the

conversion is straight forward. (fig.6)

C o n t i n u a t i o n c o d eg o t oN o p r o c e d u r eN o l o o pCC o n t i n u a t i o n b a s e d C : C b CC o n t i n u a t i o n E x t e n s i o nc o d e g o t oCC w i t h C o n t i n u a t i o n : C w C
Fig6 CwC and CbC

6 Comparison with other C based

languages

Various C based languages are introduced for

various area. Ramsey’s C - - [5], Synopsys’s Sys-

tem C [4] [2] and Spec C [1] by Spec C Open

Consortium are compared. CwC is not a lan-

guage for replacing these languages, but it is

designed to implement or simulate these.

6.1 C - -

C - - supports continuations and machine con-

scious data structure such as 16 bit integer.

This is an extension of C. Unlike CwC, it does

not use special code structure for continuation.

This means C - - is good compatibility with C.

CwC is designed to be converted to CbC; the

proper subset of C. Adding correct interface def-

inition, C - - can be converted to CbC.

6.2 System C

System C is a set of C++ library for design-

ing or simulating ASIC. It is a C++ applica-

tion. Large and Complex libraries are suitable

for complex circuit design.

CwC is not a language for large Object Ori-

ented Design. Actually it is not an object ori-

ented language. System C can be a higher level

description language on top of CwC or CbC.

6.3 Spec C

Spec C is introduced as an executable speci-

fication language. It supports various construct

for parallel, pipeline or state machine descrip-

tion. Instead of introducing complex parallel

syntax, CbC only has goto statements. Paral-

lel executions are described as a state machine.

If synchronization mechanisms are required, we

can simulate it by a scheduler. Or we can define

external temporal logical constraints on state

machine descriptions. Then we can compile the

constraints to CbC or target hardware such as

ASIC with multiple CPU core.

7 Current and Future works

A small integer version of CwC compiler is im-

plemented both in Intel based CPU and MIPS

CPU.

Since light weight continuation based pro-

gramming is rather new notion, we have to ac-

cumulate programming examples.

Our implementation targets subset of C un-

like other implementation such as long jump or

[6].

References

[1] Daniel D. Gajski, Jianwen Zhu, Rainer Dmer,

Andreas Gerstlauer, and Shuqing Zhao. SPEC

C:SPECIFICATION LANGUAGE AND METHOD-

OLOGY. KLUWER ACADEMIC PUBLISHERS,

1999.

[2] Joachim Gerlach and Wolfgang Rosenstiel. System

level design using the systemc modeling platform. In

Specification and Description Language 2000, 2000.

[3] Carl Hewitt and Jr. Henry Baker. Actors and con-

tinuous functionals. Technical report, Massachusetts

Institute of Technology, Dec. 1977.

[4] Stan Liao, Steve Tjiang, and Rajesh Gupta. An

efficient implementation of reactivity for modeling

hardware. In DAC ’97, 1997.

[5] Norman Ramsey and Simon Peyton Jones. A single

intermediate language that supports multiple imple-

mentations of exceptions. In ACM SIGPLAN 2000

Conference on Programming Language Design and

Implementation, June 2000.

[6] Y. Ishikawa. Parallel Programming in MPC++

Version 2. In Future Directions for Parallel C++,

—5—

June 1997.

—6—

