
Implementing Continuation based language in GCC

Shinji KONO, Kento YOGI

Information Engineering, University of the Ryukyus

1 A Practical Continuation

based Language

If CPS theory is successful, it should also be
working well in practical area. Our idea is sim-
ple. How about a programming language which
has continuation passing style only? How about it
runs as fast as current GNU C compiler?

Instead of creating complete new programming
language, we designed a lower language of C, so
called Continuation based C, here after CbC. Using
CPS transformation like method, we can compile C
into CbC, that is, we have some kind of backward
compatibility.

We have implemented CbC using micro-C on var-
ious architecture, and we have tried several CbC
programming experiments. Here we report new
partial implementation of CbC compiler[5] based
on GCC 4.2.3[1]. Since it contains full C capabil-
ity, we can use CbC and C in a mixture, so when
call the mixture C with C, here after CwC.

First we show CbC language overview.

2 Continuation based C

CbC’s basic programming unit is a code segment.
It is not a subroutine, but it looks like a function,
because it has input and output. We can use C
struct as input and output interfaces.

struct interface1 { int i; };

struct interface2 { int o; };

__code f(struct interface1 a) {

struct interface2 b; b.o=a.i;

goto g(b);

}

In this example, a code segment f has input a

and sends output b to a code segment g. There is
no return from code segment b, b should call an-
other continuation using goto. Any control struc-
ture in C is allowed in CwC language, but in case
of CbC, we restrict ourselves to use if statement
only, because it is sufficient to implement C to CbC
translation. In this case, code segment has one in-
put interface and several output interfaces (fig.2).C o d e S e g m e n tI n p u tI n t e r f a c e O u t p u tI n t e r f a c eO u t p u tI n t e r f a c e

O u t p u tI n t e r f a c e
図 1: code

__code and parameterized global goto statement
is an extension of Continuation based C. Unlike
C-- [4]’s parameterized goto, we cannot goto into
normal C function.

1

2.1 Intermix with C

In CwC, we can go to a code segment from a
C function and we can call C functions in a code
segment. So we don’t have to shift completely from
C to CbC. The later one is straight forward, but the
former one needs further extensions.

void *env;

__code (*exit)(int);

__code h(char *s) {

printf(s);

goto (*exit)(0),env;

}

int main() {

env = __environment;

exit = __return;

goto h("hello World\n");

}

In this hello world example, the environment of
main() and its continuation is kept in global vari-
ables. The environment and the continuation can
be get using __environment, and __return. Arbi-
trary mixture of code segments and functions are
allowed (in CwC). The continuation of goto state-
ment never returns to original function, but it goes
to caller of original function. In this case, it returns
result 0 to the operating system.

3 What’s good?

CbC is a kind of high level assembler language.
It can do several original C language cannot do.
For examples,

Thread Scheduler

Context Switch

Synchronization Primitives

I/O wait semantics

are impossible to write in C. Usually it requires
some help of assembler language such as __asm

statement extension which is of course not portable.

3.1 Scheduler example

We can easily write these things in CbC, because
CbC has no hidden information behind the stack
frame of C. A thread simply go to the scheduler,

goto scheduler(self, task_list);

and the scheduler simply pass the control to the
next thread in the task queue.

code scheduler(Thread self,TaskPtr list)

{

TaskPtr t = list;

TaskPtr e;

list = list->next;

goto list->thread->next(list->thread,list);

}

Of course it is a simulator, but it is an implemen-
tation also. If we have a CPU resource API, we can
write real multi CPU scheduler in CbC.

This is impossible in C, because we cannot access
the hidden stack which is necessary to switch in the
scheduler. In CbC, everything is visible, so we can
switch threads very easily.

This means we can use CbC as an executable
specification language of OS API.

3.2 Self Verification

Since we can write a scheduler in CbC, we can
also enumerate all possible interleaving of a concur-
rent program. We have implement a model checker
in CwC. CbC can be a self verifiable language[7].

SPIN[3] is a very reliable model checker, but
it have to use special specification language
PROMELA. We cannot directly use PROMELA as

2

an implementation language, and it is slightly dif-
ficult to study its concurrent execution semantics
including communication ports.

There are another kind of model checker
for real programming language, such as Java
PathFinder[2]. Java PathFinder use Java Virtual
Machine (JVM) for state space enumeration which
is very expensive some time.

In CbC, state enumerator itself is written in CbC,
and its concurrency semantics is written in CbC it-
self. Besides it is very close to the implementation.
Actually we can use CbC as an implementation lan-
guage. Since enumerator is written in the applica-
tion itself, we can perform abstraction or approx-
imation in the application specific way, which is a
little difficult in Java PathFinder. It is possible to
handle JVM API for the purpose, although.

We can use CPS transformed CbC source code
for verification, but we don’t have to transform all
of the source code, because CwC supports all C
constructs. (But not in C++... Theoretically it is
possible with using cfront converter, it should be
difficult).

3.3 As a target language

Now we have GCC implementation of CbC, it
runs very fast. Many popular languages are imple-
mented on top of C. Some of them uses very large
switch statement for the byte code interpreter. We
don’t have to use these hacks, when we use CbC as
an implementation language.

CbC is naturally similar to the state charts. It
means it is very close to UML diagrams. Although
CbC does not have Object Oriented feature such
as message passing nor inheritance, which is not
crucial in UML.

4 Transformation (C2CbC)

Conversion from C to CbC is straight forward,
but it generates a lot of code segments. Since CbC
does not have heap management itself, the stack
area have to be allocated explicitly.

We find GCC can perform better optimization in
translated code segment. We will discuss it later.

We have an easy implementation of C to CbC
compilation, but it is not a practical level, but we
need good converter for backward compatibility.

We can also consider possible conversion from
C++ to CbC. In this case, all hidden operation in
C++ should become explicit, for examples, object
allocations and deallocations in the stack, handling
of auto pointer and so on.

5 GNU CC implementation

So how to implement CwC in GCC. The idea
itself is simple[6], forcing C tail call elimination for
all code segment.

But before GCC version 4.x, tail call elimination
(here after TCE) is not so cleanly implemented ,
it is very difficult to implement it. But in GCC
4.x, basically TCE can be applied for all possible
functions.
__code is implemented as a new type keyword in

GCC. You may think __code is an attribute of a
function, which means that the function can call in
tail call elimination only.

Because of this implementation, we can actually
call code segment as a normal function call.

5.1 How to force tail call elimina-

tion

There many enable conditions for tail call elimi-
nation, for example, there should be no statement

3

after tail call, return value type have to be the
same, arguments size should be compatible, and so
on. We find almost half of lines in calls.c spends
to check TCE possibilities.

Our conclusion is this. It is not practical to make
sure to pass all the TCE tests, instead, we write
TCE only version of expand_call() separately in
783 lines.

4463 18527 145469 calls.c

expand_call() for function

783 2935 23651 cbc-goto.h

expand_cbc_goto() for code segment

All code segment has the same virtual argument
size and void return type, that is argument register
or argument value in the memory is shared among
all code segments. This leads a problem.

5.2 Parallel Assignment

Consider the next code,

__code carg4(struct arg args0,struct arg args1,

int i, int j,int k,int l)

{

goto carg5(args1,args0,j,k,l,i);

}

In this case, simple sequential assignments does
not work. It override args1 or args0. In nor-
mal function case, GCC simply give up TCE, and
pushes all arguments in new register or stack area.
We are not allowed that. That is we have to imple-
ment parallel assignment in the code segment goto.

This is done by simple copy overlapped argu-
ments in a stack. We hope to eliminate unnecessary
copy during GCC optimization.

5.3 Not yet done

Currently we have not yet implemented goto with
environment and __return, __environment.

In some GCC 4.x supported architecture, TCE
itself is not supported in special case. Our method
does not work for the architecture.

Since we made modifications on GCC compiler
itself, our method is GCC version sensitive. We
have to do necessary modifications for coming new
version of GCC.

6 Result

Here is our bench mark program.

f0(int i) {

int k,j;

k = 3+i;

j = g0(i+3);

return k+4+j;

}

g0(int i) {

return h0(i+4)+i;

}

h0(int i) {

return i+4;

}

It is written in C, we perform CPS transforma-
tion in several steps by hands. There are several
optimization is possible.

/* straight conversion case (1) */

typedef char *stack;

struct cont_interface {

// General Return Continuation

__code (*ret)();

};

__code f(int i,stack sp) {

int k,j;

k = 3+i;

goto f_g0(i,k,sp);

}

struct f_g0_interface {

// Specialized Return Continuation

__code (*ret)();

int i_,k_,j_;

4

};

__code f_g1(int j,stack sp);

__code f_g0(int i,int k,stack sp) { // Caller

struct f_g0_interface *c =

(struct f_g0_interface *)(

sp -= sizeof(struct f_g0_interface));

c->ret = f_g1;

c->k_ = k;

c->i_ = i;

goto g(i+3,sp);

}

__code f_g1(int j,stack sp) { // Continuation

struct f_g0_interface *c =

(struct f_g0_interface *)sp;

int k = c->k_;

sp+=sizeof(struct f_g0_interface);

c = (struct f_g0_interface *)sp;

goto (c->ret)(k+4+j,sp);

}

__code g_h1(int j,stack sp);

__code g(int i,stack sp) { // Caller

struct f_g0_interface *c =

(struct f_g0_interface *)(

sp -= sizeof(struct f_g0_interface));

c->ret = g_h1;

c->i_ = i;

goto h(i+3,sp);

}

__code g_h1(int j,stack sp) {

// Continuation

struct f_g0_interface *c =

(struct f_g0_interface *)sp;

int i = c->i_;

sp+=sizeof(struct f_g0_interface);

c = (struct f_g0_interface *)sp;

goto (c->ret)(j+i,sp);

}

__code h(int i,stack sp) {

struct f_g0_interface *c =

(struct f_g0_interface *)sp;

goto (c->ret)(i+4,sp);

}

struct main_continuation {

// General Return Continuation

__code (*ret)();

__code (*main_ret)();

void *env;

};

__code main_return(int i,stack sp) {

if (loop-->0)

goto f(233,sp);

printf("#0103:%d\n",i);

goto (((struct main_continuation *)sp)->main_ret)(0),

((struct main_continuation *)sp)->env;

}

This is awfully long, but it is straight forward.
Several forward prototyping is necessary, and we
find strict prototyping is painful in CbC, because
we have to use many code segments to perform sim-
ple thing. CbC is not a language for human, but for
automatic generation, verification or IDE directed
programming.

We can shorten the result in this way.

/* little optimized case (3) */

__code f2_1(int i,char *sp) {

int k,j;

k = 3+i;

goto g2_1(k,i+3,sp);

}

__code g2_1(int k,int i,char *sp) {

goto h2_11(k,i+4,sp);

}

__code f2_0_1(int k,int j,char *sp);

__code h2_1_1(int i,int k,int j,char *sp) {

goto f2_0_1(k,i+j,sp);

}

__code h2_11(int i,int k,char *sp) {

goto h2_1_1(i,k,i+4,sp);

}

__code f2_0_1(int k,int j,char *sp) {

goto (((struct cont_interface *)

sp)->ret)(k+4+j,sp);

}

__code main_return2_1(int i,stack sp) {

if (loop-->0)

5

goto f2_1(233,sp);

printf("#0165:%d\n",i);

goto (((struct main_continuation *)sp)->main_ret)(0),

((struct main_continuation *)sp)->env;

}

In this example, CPS transformed source is faster
than original function call form. There are not
so much area for the optimization in function call
form, because function call API have to be strict.
CbC does not need standard call API other than
interface which is simply a struct and there are no
need for register save. (This bench mark is designed
to require the register save).

Here is the result in IA32 architecture (Table.1).
Micro-C is our previous implementation in tiny C.
conv1 1 is function call. conv1 2, conv1 3 is op-
timized CPS transformed source.

./conv1 1 ./conv1 2 ./conv1 3

Micro-C 8.97 2.19 2.73

GCC 4.87 3.08 3.65

GCC (+omit) 4.20 2.25 2.76

GCC (+fast) 3.44 1.76 2.34

表 1: Micro-C, GCC bench mark (in sec)

There are two optimization flag for GCC.
-fomit-frame-pointer eliminates frame pointer
(%ebp). The frame pointer itself is useful in code
segment, but it generates unnecessary push and
pop or leave instruction. Using fastcall option,
GCC ignore the standard call convention such as
all argument have be on stack in IA32. In Micro-
C implementation, these optimization is naturally
implemented in code segment, so it is faster than
GCC without these options.

But with these options, GCC is faster than
Micro-C. Of course, in more complex source, GCC’s
complex optimization should work well.

7 Conclusion

We have designed and implemented Continuation
based language for practical use. We have partial
implementation of CwC using GCC 4.2.3. Using
suitable optimized options CPS transformed source
sometimes runs faster than original function call
version.

This gcc implementation should be portable on
all architectures supporting tail call elimination,
but we have tested only on i386 now.

参考文献

[1] Free Software Foundation, Inc. GCC, the GNU
Compiler Collection, March 2008.

[2] K. Havelund and T. Pressburger. Model check-
ing java programs using java pathfinder, 1998.

[3] Gerard J. Holzmann. The model checker SPIN.
Software Engineering, Vol. 23, No. 5, pp. 279–
295, 1997.

[4] Norman Ramsey and Simon Peyton Jones. A
single intermediate language that supports mul-
tiple implementations of exceptions. In ACM
SIGPLAN 2000 Conference on Programming
Language Design and Implementation, June
2000.

[5] Shinji KONO. CbC, March 2008.

[6] 河野 真治. 継続を基本とした言語CbCの gcc上
の実装. 日本ソフトウェア科学会第 19回大会論
文集, Sep 2002.

[7] 河野　真治 . 検証を自身で表現できるハードウェ
ア、ソフトウェア記述言語Continuation based C
と¿、その Cell への応用. 電子通信学会 VLD研
究会, March 2008.

6

