
Implementing Continuation based language in
LLVM and Clang

Kaito TOKUMORI
University of the Ryukyus

Email: kaito@cr.ie.u-ryukyu.ac.jp

Shinji KONO
University of the Ryukyus

Email: kono@ie.u-ryukyu.ac.jp

Abstract—The programming paradigm which use data seg-
ments and code segments are proposed. This paradigm uses
Continuation based C (CbC), which a slight modified C language.
Code segments are units of calculation and Data segments are
sets of typed data. We use these segments as units of computation
and meta computation. In this paper we show the implementation
of CbC on LLVM and Clang 3.7.

I. A PRACTICAL CONTINUATION BASED LANGUAGE

The proposed units of programming are named code seg-
ments and data segments. Code segments are units of calcu-
lation which have no state. Data segments are sets of typed
data. Code segments are connected to data segments by a meta
data segment called a context. After the execution of a code
segment and its context, the next code segment (continuation)
is executed.

Continuation based C (CbC) [1], hereafter referred to as
CbC, is a slight modified C which supports code segments. It
is compatible with C and has continuation as a goto statement.

Code segments and data segments are low level enough to
represent computational details, and are architecture indepen-
dent. They can be used as architecture independent assemblers.

CbC was first implemented on micro-C one path compiler.
GCC based CbC compiler is developed in 2008[1]. GCC
is GNU Compiler Collection [2]. In GCC version, nested
function is used to implement goto with environment in
2011[3]. In this study, we report a latest CbC compiler which
is implemented in LLVM and Clang 3.7.
C-- [4] is also known as a lower level language of C. It has

precise type specification and goto statement with parameters.
CbC introduces __code+ type for code segment which makes
clear separation of functions and code segments.

II. CONTINUATION BASED C

CbC’s basic programming unit is the code segment. These
are not subroutines, but they look like functions because they
take input and produce output. Both input and output should
be data segments. Table III details the definition of the data
segment.

In this example, the code segment f takes the input data
segment allocate (allocate is the data segments identifier) and
sends f’s output to the code segment g. The CbC compiler
generates the data segment definition automatically, so writing
it is unnecessary. There is no return from code segment g. G
should call another continuation using goto. Code segments

1 __code f(Allocate allocate){
2 allocate.size = 0;
3 goto g(allocate);
4 }
5
6 // data segment definition
7 // (generated automatically)
8 union Data {
9 struct Allocate {

10 long size;
11 } allocate;
12 };

TABLE I
CBC EXAMPLE

have input data segments and output data segments. Data
segments have two kind of dependency with code segments.
First, Code segments access the contents of data segments
using field names. So data segments should have the named
fields. The second dependency is a data dependency, that is all
input data segments should be ready before their execution.

Code SegmentData
Segment

Data
Segment

Data
Segment

Code Segment

Code Segment

Fig. 1. Code Segments and Data Segments on CbC

Shifting completely, from C to CbC is unnecessary as in
CbC we can go to code segments from C functions and call
C functions in code segments The latter is straightforward but
the former needs further extensions.

1 int main() {
2 goto hello("Hello World\n", __return,

__environment);
3 }
4
5 __code hello(char *s, __code(*ret)(int, void*),

void *env) {
6 printf(s);
7 goto (*ret)(123);
8 }

TABLE II
CALL C FUNCTIONS IN A CODE SEGMENT

In this hello world example, the environment of main()
and its continuation is kept in the variable environment.
The environment and the continuation can be accessed using

environment and return.The arbitrary mixing of code
segments and functions is allowed. The continuation of a goto
statement never returns to the original function, but goes to the
caller or the original function. In that case, it returns the result
123 to the operating system. This continuation is called goto
with environment.

III. LLVM AND CLANG

The LLVM Project is a collection of modular and reusable
compilers and tool chain technologies, and the LLVM Core
libraries provide a modern source and target independent op-
timizer, along with code generation support for many popular
CPUs. Clang is an LLVM native C/C++/Objective-C compiler.
Figure 2 shows Clang and LLVM’s compilation flow.

LLVM IR SelectionDAG
ISel

Machine
Code

optimizations

Machine
Code

Code
Emission

Assembly
Code

C/C++
Obj-C Parser clang

AST CodeGen

clang

LLVM

Fig. 2. LLVM and Clang structure

LLVM has an intermediate representation which is called
LLVM IR[5]. This part remains unmodified so that the opti-
mization part does not need to be modified.

IV. IMPLEMENTATION IN LLVM AND CLANG

The CbC compiler is implemented in LLVM and Clang
using the following ideas.

• Code segments are implemented by C functions.
• Transition is implemented by forced tail call.
• Goto with environment is implemented by setjmp and

longjmp.
code is implemented as a new type keyword in LLVM

and Clang. code is similar to an attribute of a function,
which means that the function can only be called in tail call
elimination. Because of this implementation, code segments
can actually be called as C function calls.

Forcing a tail call requires many conditions be met. For
example, there should not be a statement after a tail call, the
caller and callee’s calling conventions must be the same and
their types should be cc10, cc11 or fastcc and the callee’s
return value type has to be the same as the caller’s.

All code segments have the void return type and writing
statements after continuation is not allowed. As a result, type
problems and after statement problems are solved.

Tail call elimination passes are enabled in BackendUtil.cpp.
In Clang, when the optimization level is two or more, tail call
elimination passing is enable. Here it has been modified to be
enabled anytime, however if the optimization level is one or

less, tail call elimination passes only work for code segments.
A calling convention problem was also solved. fastcc was
selected for a code segment’s calling convention. In Clang,
calling conventions are managed by the CGFunctionInfo class
and its information is set in CGCall.ccp (a part of CodeGen
), which is where code segments calling conventions were set
to fastcc.

Goto with environment is implemented by code rearranging.
If the environment or return is declared, the CbC
compiler rearranges the code for goto with environment.
Setjmp and longjmp are used to do this. setjmp to save the
environment before continuation and longjmp to restore it.

V. RESULT

Table III shows the benchmark program.

1 int f0(int i) {
2 int k,j;
3 k = 3+i;
4 j = g0(i+3);
5 return k+4+j;
6 }
7
8 int g0(int i) {
9 return h0(i+4)+i;

10 }
11
12 int h0(int i) {
13 return i+4;
14 }

TABLE III
BENCHMARK PROGRAM IN C

Fig.III is a normal C program. We can rewrite this program
into CbC in several way, conv1,conv2,conv3. Basicaly
function call is emulated by goto statement with explicit
stack. conv2,conv3 uses extra argument to eliminate these
stacks. The CbC conv3 source is shown in fig.IV Using this
benchmark, function call overhead become visible. In order to
see the overhead, inline function expansion is prohibited. The
benchmark results are shown in TABLE V.

1
2 struct cont_interface { // General Return

Continuation
3 __code (*ret)();
4 };
5
6 __code f2_1(int i,char *sp) {
7 int k,j;
8 k = 3+i;
9 goto g2_1(k,i+3,sp);

10 }
11
12 __code g2_1(int k,int i,char *sp) {
13 goto h2_11(k,i+4,sp);
14 }
15
16 __code h2_1_1(int i,int k,int j,char *sp) {
17 goto f2_0_1(k,i+j,sp);
18 }
19
20 __code h2_11(int i,int k,char *sp) {
21 goto h2_1_1(i,k,i+4,sp);
22 }
23
24 __code f2_0_1(int k,int j,char *sp) {
25 goto (((struct cont_interface *)sp)->ret)(k+4+j

,sp);
26 }

TABLE IV
BENCHMARK PROGRAM CONV3 IN CBC

conv1 conv2 conv3
Micro-C 6.875 2.4562 3.105
GCC -O2 2.9438 0.955 1.265
LLVM/clang -O0 5.835 4.1887 5.0625
LLVM/clang -O2 3.3875 2.29 2.5087

TABLE V
EXECUTION TIME(S)

LLVM and Clang compilers are faster than Micro-C when
optimization is enabled. This means CbC get benefits from
LLVM optimizations. The LLVM and Clang complier is
slower than GCC, but GCC cannot compile safely without
optimization. This means LLVM can compile more reliably
than GCC.

VI. CONCLUSION

This Continuation based language has been designed and
implemented for practical use. CbC has been partially imple-
mented using LLVM and Clang 3.7. CbC can use LLVM’s
optimization. LLVM IR was not modified to implement CbC’s
compiler.

In the future, data segments, meta code segments and meta
data segments for meta computation will be designed and
implemented.

REFERENCES

[1] S. Kono and K. Yogi, “Implementing continuation based language in
GCC,” Continuation Festa 2008, 2008.

[2] Free Software Foundation, Inc., “GCC, the GNU Compiler Collection,”
March 2008. [Online]. Available: http://gcc.gnu.org/

[3] S. Kono, “Demonstration of continuation based c on gcc,” Continuation
Workshop, 2011.

[4] N. Ramsey and S. P. Jones, “A single intermediate language that sup-
ports multiple implementations of exceptions,” in ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation, June
2000.

[5] LLVM Language Reference Manual,
http://llvm.org/docs/LangRef.html.

[6] LLVM Documentation,
http://llvm.org/docs/index.html.

[7] clang documentation,
http://clang.llvm.org/docs/index.html.

[8] “CbC compiler repository.” [Online]. Available: ssh://one@firefly.cr.ie.
u-ryukyu.ac.jp/hg/CbC/CbC LLVM

