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Figure 19: Interrupt

kind of synchronization is necessary. In this thread diagram, these synchronization are

clearly visible.

As we saw in examples, communications may have its own states in detailed modeling.

Generally speaking, every components in a thread diagram has a state. In a meta level

description, these states can be visible and can explicitly be scheduled.

Object Level

Meta Level

Scheduler

Figure 20: Reective hierarchy

7 Conclusion

In this paper, we discussed the usefulness of the multiple-thread computation in objects. At

�rst we started with combination of meta level computation and a group of tightly coupled

objects. To describe complex communication among them, we introduce thread diagram.

Using the thread diagram, a pattern of communication among these set of thread become

visible. If we think each synchronization type as a message passing, again we have a single

thread representation of objects. Now our long trip from single thread objects is closed.

The thread diagram is much more simple and convenient for speci�cation or analysis,

since it has �nite synchronization state. It is also hierarchical representation. An object

consists of a set of threads and a thread can consist of another set of threads.
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of expressiveness. Di�erence is as follows: Petri-net has a data driven visibility but thread

diagram has a control driven visibility. In other words, thread diagram is a control ow

graph with synchronization.

In a concurrent program speci�cation, it is good to start from high level description,

and then to do incremental re�nement. For example, consider a simple disk driver. A disk

driver communicates with a disk drive using some communication. The most simple and

Command/Ack Communication

Simple Message Passing

With Time Out

Figure 18: Communication Abstraction

abstract way is direct rendezvous and exchanging information at once. In the next level,

these rendezvous are separated into directed communications: command and acknowledge.

In more detailed model, command or acknowledge may fail, so we need to introduce time out

mechanism. To implement time out a separate process is necessary. In this small example

we omit detail of time out generator. It does not even specify the type of synchronization.

6.1 Example descriptions of Parallel Reection

Previous examples are rather classical examples and they only use object level description.

However real usefulness of thread is reective computation. An interrupt is a good example

of reective procedure. To describe an interrupt, object level is not enough, because it

must change object level computation. To describe meta level computation, an object is

divided into more detailed parts. Here we use a heap ( a local storage of object ) explicitly

(Fig.19). An interrupt acceptor is running separately, so it accepts interrupt without

interfere the main routine for a while. However to access main routines local states, some
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Now
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Future

Figure 16: Now, Past and Future

our diagram. (Fig.16). In the thread diagram, no information on local state is used.

So all the synchronization information is visible. In this Past example, a wait and pass

type synchronization prevent duplicate sends. It actually violates the fact that Past type

can send messages in unbounded way. The thread diagram cannot describe unbounded

synchronization.

To show the exclusion explicitly, a non-deterministic choice can be used. Here we show

both thread diagram representation and Petri-net representation. In both representations,

Petri-Net

Thread Diagram

Figure 17: Exclusion

a position of token makes a state of exclusive resources. These two implementations are

equivalent from the view point of the non-deterministic �nite state machine. There is a

good correspondence between Petri-net and thread diagram. Since bounded Petri-net is a

�nite state machine, thread diagram is equivalent to bounded Petri-net from a viewpoint
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tional which checks token's state in a branch or a synchronization primitive (Fig.15). In

the case of the branch, only the path which satis�es condition is used. In the case of the

wait, if its condition is false, token passes without any e�ect of waiting. Conditional is a

part of synchronization type.

if (yy)

if (xx)

Figure 15: Conditional

5.5 Synchronization State

In this thread diagram, it is possible to extract synchronization state only. This is possible

because we carefully avoid to add states to communication lines. If we ignore the informa-

tion on local token and direction of connection, only synchronization state is remain. In

this abstraction, a direction of rendezvous is just a constraint in a token initialization. The

positions of tokens fully represent all the synchronization state. Using process wide clock

time i, synchronization state S for thread diagram Pfp; p

0

; p

00

; :::p

(n)

g is as follows:

S

i

= fp

i

; p

0

i

; p

00

i

; :::p

(n)

i

g

where p

i

means position token in thread. Since all the local position p is �nite, S is also

�nite.

In this sense, expressiveness of thread diagram is equivalent to non-deterministic �nite

state machine. For example, a mapping from a map G ! G

0

to a truth value set fT; Fg

is a transition matrix of this thread diagram. A state G is a dead lock state when it does

not have mapping from G to T in transition matrix. Various veri�cation schemes based on

�nite state machines can be applied here, for example, temporal logic veri�cation [5].

In the next section, using various examples, abstraction methods in thread diagram is

discussed.

6 Examples

In concurrent object oriented language, a simple remote procedure call type message passing

is not enough. For example, ABCL[9] supports three kinds of message passing: Now,

Past and Future. Followings are example implementations of Now, Past and Future using
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Figure 12: Wait and Pass

Figure 13: Implementation of Wait and Pass

Figure 14: Merge
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Figure 9: Gate

Figure 10: More Complex Communication

To indicate such kind of asymmetry, an arrow is add to the communication link (Fig.11).

There is a special syntax for one bu�er unidirectional link, since that is very useful and

Figure 11: Wait and Wait with Direction

popular one in OO people. This link has one state and it must be properly initialized. If

a token points empty position of the bu�er, the other synchronization point can be passed

once. It leaves some information on the bu�er. Later on the other side of bu�er, it will be

picked up. A wait and pass link creates natural communication direction.

Merge is a syntax sugar on communication line. In Fig.14, three threads send informa-

tion in random. A 1 represents a set of three nondeterministic rendezvous.

Sometimes, an object requires detailed control of synchronization. Using explicit mes-

sage passing to its meta object solve this problem. However, it is possible to write condi-
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It is possible to make rendezvous with more than two node. 1 is in close state when in

coming token will not cause movement of waiting token, on the other hand, it is in open state

when incoming token will cause movement of them. This does not mean that a connection

has state. This state is determined by tokens not connection itself.

Each simple move p

i

to p

i+1

, or execution of 1 rule are deterministic move. To represent

non-deterministic move, a simple branch is used. A sequence of < s

j

0

s

j

1

:::s

j

n

> represent an

arc of a thread. An arc may have a multiple-way branch< f< s

j

0

s

j

1

:::s

j

n

>;< s

k

0

s

k

1

:::s

k

m

>

g >. The most simple non-deterministic branch is < s

1

fs

2

; s

3

g > (Fig.7).

s

3

s

2

s

1

Figure 7: Non Deterministic Path

It is possible to combine non-deterministic choice and rendezvous. It automatically

selects possible transition(Fig.8). If rendezvous point is closed state, it will go another

path. This is used as a multiple-way rendezvous. In this way, it is possible to preempt

rendezvous wait.

Figure 8: Non Deterministic Select

A gate 2 is another kind of synchronization types. It is used with 1 types and it works

like inverse of 1. If any one of other 1 is active (but closed), this 2 will be open, otherwise

it is closed. A 2 does not a�ect other 1, so if all other 1 become active, all waiting tokens

will move and 2 will be closed again (Fig.9). This is useful for creating scheduler.

To make more complex communications, we can combine primitives above. Fig.10 is

an example of communication with single slot bounded bu�er. The communication line

has one state to represent empty. N-bu�er communication is easily implemented by series

of one-bu�er communication. The above bounded bu�ered communication example above

is bidirectional. 1 communication is a kind of exchange functions[1]. We also need to

describe unidirectional communication for example a message passing or remote procedure

call. These asymmetries are coming from causality or asymmetry of exchanging information.
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p

0

p

Figure 5: Multiple-Threads Object

The threads are communicating each other. The process P communicates with the

outside using normal asynchronous message passing. We cannot determine global clock

here. The message queue is accessed by some thread segment one at a time. In this sense

some of threads have special side e�ect to outside. In the next section, communication

primitives among threads and its semantics are discussed.

5.4 Communication Primitives

Tokens will run over rings according to synchronization rules. If no communication connec-

tion, at token simply proceed the segment from its tail to head. The most simple commu-

nication type in thread diagram is rendezvous 1. 1 represents synchronization point in a

thread, which is connected to other synchronization points by a dashed line. A connection

is represented by a sequence of pair of synchronization point (tail of segment) and its type.
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t
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)
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where s

i

j

means j th segment of thread s

(i)

and t

k

is type of communication such as 1.

p

p

0

s

0

0

s

0

1

s

1

s

0

Figure 6: Wait and Wait

If tokens are all available in each 1 synchronization points, all tokens proceed at once.

If not, tokens will stay at 1 point until all tokens available. We call a 1 with staying token

active. For example, in a connection << s

0

# 1>< s

0

0

# 1>> between threads p and p

0

, a

state p

0

= s

0

#; p

0

1

= s

0

0

# causes a transition:

p

1

= s

0

"; p

0

1

= s

0

0

"
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debugging. If an execution diagram is easily understood, it also can be used for synthesizing

multiple threads program.

5.3 The Thread Diagram

A thread in a stable stage is a repeated activity. To represent repeating we use a directed

ring p. p can be divide into segments of state s

i

, where i is an index of n segments in p :

< s

0

s

1

:::s

n

>. There is exactly one token p in a ring, so we need not distinguish token and

ring. A ring is called p, if it has token p.

s

i

is a directed segment of a ring, s

i

" means head of s

i

, and s

i

# means tail of s

i

. Usually

we use tail of segment for token positioning and a down arrow may omit. Fig.4 has two

segments s

0

; s

1

and s

0

" = s

1

#; s

1

" = s

0

#. Adding to its position p usually carries local

states L(p), value of instance variable, of the thread.

Since the token p is running discrete segment, local time of thread is an integer and it

can be de�ned easily. When a token proceed one segment, local time is incremented by an

arbitrary �nite positive number. It starts from 0. A local time increase monotonicly but

not uniformly, later we use this freedom for making a clock over multi-thread. A local state

of token is indexed with local time l. L(p

l

) is the last local state of token p at local time

l. p

l

itself means a position of token in a ring. In this case, p

l

is always in position s

0

# or

s

1

#.

s

0

"; s

1

#

s

0

#; s

1

"

p

s

1

s

0

Figure 4: Simple Thread

A process P may contain a set of threads (Fig.5). In Muse system, some of the threads

are meta objects and some others are collapsed objects.

P � fp; p

0

; p

00

; :::p

(n)

g

Synchronous communications determine a partial order on a �nite set of local clocks. Syn-

chronous means that a communication between two thread will occur at the same time.

We can make a full ordered over P , and adjust all local clocks to the order using successive

positive integer. This is a process wide clock i. In each clock, one step of token movement

is occurred in some thread in P .

A state of process P

i

is a set of the thread states where i is process wide clock of P .

P

i

� fp

i

; p

0

i

; p

00

i

; :::p

(n)

i

g
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threads description.

5.2 Requirements

At �rst, we do not want to describe full detail of process communications, on the contrary,

concise and abstracted description. To make problems easy, execution of parallel programs

are divided into two stages. From the operating system view, when an application program

is running, it does not create processes continuously. So there are two stages:

stable stage: Fixed number of processes are running in a cooperating way.

recon�guration stage: New processes and new connection between these processes are

created.

The stable stage may last in�nitely but recon�guration stage may not. If recon�guration

stage will last very long, it cannot run e�ciently, since cost of process creation is usually

highest one. We want to concentrate on stable stage. Here is a list of requirements.

� a model for stable processes, it does not change con�guration.

� a model for �xed number of processes.

� a �nite model for decidability.

� visible synchronization states and invisible object states.

Some of the nondeterminism comes from synchronization mechanism. It creates a state

of synchronization which is independent from states of original object. It is necessary

to separate the states of synchronization from the states of the object. CCS has large

expressiveness, but it does not distinguish communication, synchronization and the states

of the object.

Concurrent program run in a non-deterministic way, so description must cope with non-

determinism. Non-determinism is a hard part of concurrent programming, so it is helpful

to see it in a visible way.

From the software engineering view point, compositability is important. If two diagrams

cannot connect each other directly, there is no such compositability. If we use the state

diagram, a composition of two independent parallel execution makes completely di�erent

diagram. From this point of view, Petri-Net has a good nature.

It is required that our diagram can apply to practical programming languages. Even

sequential programming language such as C can run in a distributed way using operating

system functions. The most useful nature of object oriented programming is its support

for abstraction. An abstraction can be thought as an encapsulation. The encapsulation

mechanism for complex communication will be useful.

The model should provide the ability for users to examine various propositions such as

dead lock detection, liveness or reachability.

The diagram should also used for a system analysis. For example, detecting critical

path, estimating performance or response time. It is also usable for algorithmic program

6



Control Flow

Object

Meta-Meta

Meta

Figure 3: Concurrent Execution of Meta and Object

5 Object with Multiple-Thread

Basically an object in Muse is a process having only one activity. But as we mentioned

before, parallel reection and collapsing combines several activities in a tightly coupled

way. From one point of view, they are still independent objects communicating each other

by message passing. But their message passing will have another characteristics, which is

a combination of intra-object data accessing and synchronization. A message passing will

become more e�cient and fast using this character, because accessing and synchronization

can be directly implemented. In other words, a package of meta objects and collapsing

objects is created, and their activities will be a set of thread.

A multi-thread makes it possible to reduce expensive message passing, but at the cost of

managements of the threads and inter-thread communication. All these managements are

meta level computation. Problem is how to program a multi-thread object. Object oriented

programming cannot be used directly here. An abstraction of synchronization relationship

is necessary here. Here we show an abstraction technique using thread diagram.

5.1 Synchronization Abstraction

The Muse Operating System runs objects written in various programming languages. Some

of them are sequential languages, and the others are parallel programming languages. Com-

munication between these languages and Muse operating system is message passing, unlike

in classical operating system, these are using kernel traps. There are another kind of inter-

action in Muse: Parallel Reection. Representations of these interactions and activities of

the processes are proposed.

Various kinds of models or diagrams for parallel computations are already discussed in

many places, for example CCS[4], Petri-Net[6] or Temporal Logic[3].

The thread diagram we introduce here is designed for multiple-threads object. One

principle of designing our diagram is decidability for various kind of queries. The other

principle is practical usefulness: �tness to the current programming language and visibility.

Before describing detail of thread diagram, let us show basic requirements of multiple-

5



in the meta level. Since object level computation and the meta level computation cannot

run simulteanously in a true sense, there is an error of replication between meta level data

structure and object level data structure. Such an error is synchronized in an ad-hoc way by

causal relationship (Fig.2). This is also a part of de�nition of causal relationship. Various

Meta Object

Object

Causality

Figure 2: Replication Base Reection

errors may occur in the procedure of the replication:

abstraction error: Usually reected data structure in the object level is only the abstrac-

tion of meta level data structure, so it only represents a part of meta level information.

synchronization error: In an interval between two synchronization, both reected data

in object level or meta level may be changed, then it may generate an replication

error.

de�nition error: Since the synchronization procedure is de�ned in a meta level in an

ad-hoc way, it may contain error.

In spite of these errors, we still make this type of reection useful if we can de�ne the

operational semantics clearly. It contains error from the view point of true reective causal

relationship, but if these errors are well de�ned, we can still use them in a consistent way.

We establish a separation between meta level description and object level description

here, because rei�ed data in object level is only de�ned in terms of object level. If an object

level language contains concurrent execution, the access or synchronization procedure of

rei�ed data structure can be represented in the object level programming construct. If an

object level language does not support concurrent execution, the synchronization procedure

is modi�cation of object level data structure from outside of the language. In this case,

the rei�ed data is actually a procedure which has states. The description of reected data

is separated from meta-interpreter, however in order to determine a semantics of reection

we still need a meta-interpreter.

In this scheme, there are no suspension in reective procedure (Fig.3). Object level

program will change meta level data structure as an object level data structure. These

changes are automatically incorporated into meta object with some delay, via replication

mechanism. Conversely meta object can change object level program or data.

In Parallel Reection, an object, its meta object and replication mechanism (casual

connection) are running as threads in one object.
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4.1 Classical Reection Scheme

In the classical reection schemes, reection is implemented in a sequential way. In a

sequential implementation, there are three important requirements:

� Meta circular interpreter description,

� Control passing mechanism over meta levels,

� Passing data between two di�erent meta levels.

We can de�ne useful operations beyond normal program execution, which include catch/throw

operation, error handling, signal/interrupt and so on. In Smith [7], level shifting are syn-

tactically de�ned as " or lambda expression with reect keyword. Operations on di�erent

level are represented by explicit description of continuation treatment such as normalize. In

Friedman's approach [2], communication between meta level and object level is represented

with two basic operation rei�cation and reection.

In rei�cation and reection, the control ow of the object level program is transferred

to meta level (Fig.1). In other words, the execution of object level is suspended. Between

the rei�cation and the reection, any mutation of rei�ed data in object level is not allowed,

since it causes the error of reection.

Control Flow

Object

Meta-Meta

Meta

Figure 1: Classical Reection

4.2 Replication Base Reection

Replication is a copy of original object with automatic equivalence maintenance. Our new

reection scheme features replication as a communication between meta object and normal

object.

To initiate reection, a new data structure is created. This data structure is not an

instance of meta-level data, and it is de�ned in terms of object level description. A causal

relationship between a data and some data in meta level is established as a mechanism

of reection i.e. replication mechanism. This causal relationship is operationally de�ned

3



levels of reective hierarchy. They are a roughly corresponding to the hierarchy of the

operating system implementation.

Object Level: Application programs or normal objects are running on this level.

Meta Level: Kernel dependent local state of an object such as memory segment table,

context structure or scheduler are in this level as meta objects. These are hardware

independent kernel parts.

Meta-Meta Level: Hardware dependent parts and operating system kernel are in this

level. Meta level of this level is this level itself, so no further meta level.

3 Collapsing

An important feature of Muse operating system is collapsing. Before de�ning collapsing,

here we de�ne some important words in Muse.

object A unit of abstraction for programs, an object has a unit of code and data

process A unit of code and data with activities in objects from kernel's point of view

activity A current of executions for a virtual processor

thread each activity in a process

group object Representative object of a set of objects

Objects in Muse are concurrent objects. One object is corresponding to a process in normal

case. They have separate activities, separate memory spaces, separate scheduling structures

and separate code and data each other. A process is a special case of group object, which

is a set of objects for a management unit in Operating System kernel.

Several objects can be combined to share some of those for attaining higher performance

such as sharing codes, sharing memory space or combined scheduling. We call such a unit

a collapsed object. This procedure is the collapsing. Collapsing makes multiple threads

in a process. This paper shows a frame work of detailed communication among multiple

threads.

Collapsing does not create multiple threads within an object, but in Muse multiple

threads are also required with in an object, because of the reection in Muse. In next

section we discuss Parallel Reection in Muse.

4 Parallel Reection

In this paper, accessing a method of a meta object is performed in a way di�erent from

the 3-Lisp's approach. There are a lot of concurrent objects in Muse system. This forces

reective accesses in parallel, i.e. some meta objects are accessed simultaneously by several

di�erent objects. A meta object may be called while it's normal level object is running,

such as an interrupt.

2



Thread Diagram

Shinji Kono, Masaki Yamada and Mario Tokoro

e-mail:kono@csl.sony.co.jp

Sony Computer Science Laboratory Inc.

3-14-13, Higashigotanda, Shinagawa-ku, Tokyo 141, Japan

February 13, 1991

1 Introduction

Nowadays, every computer is connected to some kind of networks. Computers perform par-

allel processing. Every application should run in parallel or in a distributed way for higher

speed and availability. Already various communication primitives have been proposed to

implement parallel computations, but they are very complicated.

What we are concerned with here, is the abstraction of synchronization. Fine grain

parallelism are not considered here, because in such kind of systems, it is impossible to pay

attention to each synchronization. So here we consider coarse-grain parallelism.

What is the di�culty in parallel and distributed computation? There are several activ-

ities running on some shared resources, so that some kind of control over them is necessary.

We want to �nd a way to manage parallel processing in a good way like structured program-

ming or object oriented programming. However, even in object oriented programming, there

are no way of abstracting parallel process managements. In this paper, we use reective

hierarchy and thread diagram for synchronization abstraction.

2 Muse - A Reective Operating System

The Muse Operating System is an object-oriented distributed operating system with meta

object concept. An object has several meta objects which represent its computation. Since

a meta object also has its meta objects, the tower of meta level hierarchy is naturally

created. A meta object of an object is the object itself in some sense, so accessing to its

meta object is called reection. Thus, meta level hierarchy is called reective hierarchy.

Reective hierarchy is naturally in�nite, however, direct implementation of such in�nite

tower is not possible nor desirable. In Muse system, unlike another reective systems such

as 3-Lisp [7] or meta object system [8], reection is used as the frame work of operating

system and, therefore it is not fully reective system. For example, Muse has only three

1


