
[2] D. P. Friedman and M. Wand. Rei�cation: Re
ection without metaphysics. Conf. Record of

the 1984 ACM Symp. on Lisp and Functional Programming, pp. 348{355, 1984.

[3] S. Kono, T. Aoyagi, M. Fujita, and H. Tanaka. Implementation of temporal logic programming

language Tokio. In Logic Programming '85, number LNCS-221. Springer-Verlag, 1985. Lecture

Notes in Computer Science.

[4] R. A. Kowalski. Predicate logic as a programming language. In Information Processing 74,

1974.

[5] Pattie Maes. COMPUTATIONAL REFLECTION. Technical Report TR-87-2, VUB AI-LAB,

1987.

[6] Pattie Maes and Daniele Nardi, editors. META LEVEL ARCHITECTURE AND REFLEC-

TION. North-Holland, 1988.

[7] George Milne and Robin Milner. Concurrent process and their syntax. J. ACM, Vol. 26,

No. 2,, April 1979.

[8] James Lyle PETERSON. Petri Net Theory and the modeling of systems. Prentice-Hall, Inc.,

1981.

[9] Brian C. Smith. Re
ection and semantics in lisp. Technical Report CSLI-84-8, Center for the

Study of Language and Information, 1984.

[10] Linda R. Walmer and Mary R. Thompson. A Mach Tutorial. Technical report, Department

of Computer Science, Carnegie-Mellon University, August 1987.

[11] Takuo Watanabe and Akinori Yonezawa. Re
ection in an Object-Oriented Concurrent Lan-

guage. In Proceedings of Object-Oriented Programming Systems, Languages and Applications

in 1988. ACM, September 1988. also appeared in SIGPLAN NOTICES, Vol.23, No.11.

[12] Yasuhiko Yokote, Fumio Teraoka, and Mario Tokoro. A Re
ective Architecture for an Object-

Oriented Distributed Operating System. In Proceedings of European Conference on Object-

Oriented Programming in 1989, 1989.

[13] A. Yonezawa, E. Shibayama, T. Takada, and Y. Honda. Modeling and programming in an

object-oriented concurrent language ABCL/1. In Object-Oriented Concurrent Programming.

MIT Press, 1987.

12



Normal Object

Shared Resorce

Intercepter

Interrupt

Figure 10: Interrupt

The components can be explicitly scheduled because their states are visible in the detailed descrip-

tion. In this �gure, the synchronization points represented by squares are gates to control the

Detailed Acess (Meta Meta level)Meta level Access

Normal Level

Meta Level

Scheduler

Figure 11: Scheduler

passage of tokens. The scheduler can be controlled directly by changing the represented structure

with a re
ective operation.

9 Conclusion

We presented some problems that arise in concurrent re
ective programs. Such problems could

not be solved elegantly with the use of meta-interpreters. The approach presented here, called

replication-based re
ection, does not use meta-interpreters. Without meta-interpreters, re
ection

can be described in any language. Thus it allows, for example, to control pieces of program coded

in Fortran from others written in Smalltalk.

The approach is expected to have good results in implementing re
ective operating systems. It

is being designed for Muse operating system[12] and will be provided as an interfacing library of

re
ective operations to control the operating system and concurrent programs.

References

[1] G. Agha and C. Hewitt. Concurrent programming using actors. InObject-Oriented Concurrent

Programming. MIT Press, 1987.

11



object change or how many messages the object send to its acquaintances. Such description is

ad-hoc and impractical. In the next chapter, we will discuss how to establish fully represented

re
ection.

8 Fully Represented Re
ection

If re
ection is fully represented, we need no meta-interpreter to describe how re
ection works.

Generally it is impossible to provide fully represented re
ection with static syntax. This is because

re
ection changes the computation dynamically. From the viewpoint of replication-based re
ection,

fully represented re
ection is supported by detailed replication of the system's structure. In this

case, a caught context should be modeled by the local state of the object and the trace of the

descendant messages, as illustrated in (Fig.9). Modi�cation of this replication fully speci�es the

semantics of re
ection.

Replications Re
ection

Generator

Filters

Generator

Figure 9: Fully Represented Re
ection

Fig.9 shows a thread diagram. A thread diagram describes the activities and communications of

objects with multiple threads. An activity is represented by a token on a �xed �nite closed path

(circle). Synchronization points and communications are represented by small \butter
ies" that

link those circles. A token contains the local states of an object. A thread diagram is not designed

to describe all the details of computation but it is powerful enough to describe the controls of

concurrent execution.

Various kinds of models or diagrams for parallel computation have been introduced in the litera-

ture (e.g., CCS[7], Petri-Net[8] and Temporal Logic[3]). A thread diagram is a �nite representation

of a �xed number of processes. It has the expressive power equivalent to non-deterministic �nite

automaton.

An interrupt is a good example of re
ective operation. Interrupts cannot be described in the

normal level alone because they can change computation in that level. The meta level computation

of an interrupt consists of the detailed parts of the execution of the object (Fig.10. Here we use a

heap (the local storage of an object) explicitly. Synchronization represented by a line is a bu�ered

communication.

The meta-object that accepts an interrupt runs independently with the interrupted object. Some

kind of synchronization is necessary when the meta-object accesses the local states of the normal

level objects. The synchronization points are explicitly shown in the thread diagram.

Fig.11 shows one more level detailed thread diagram. Communication can have its own states in

the detailed diagram. Generally speaking, every component in a thread diagram can have a state.

10



[object genartor

(state [�lter:=[�lter�class <== [:new]]]

[n :=1 ])

(script

(=> [:generate]

(re
ect (state [c := (catch)])

[�lter <= [catch:

[object (script

(=> [:throw last]

(print last)

(terminate catch)

))]]])

(loop [�lter <= [:check (incf n)]])))]

[object �lter�class

(script

(=> [:new]

![object �lter

(state next��lter)

(re
ect (state [catch]))

(script

(re
ect (=> [catch: c])

[catch := c]

[next��lter <= [catch: c]])

(=> [:check n]

(output <== [:print n])

(next��lter := [�lter�class <== [:new]])

(re
ect

(if (> n 100) (catch <= [:throw n])))

(wait�for�loop

(=> [:check m]

(unless (zerop (mod m n))

[next��lter <= [:check m]])))))]))]

Figure 8: Catch and Throw

9



7 Unsafe Re
ection

In the case of unsafe re
ection, the meaning of re
ective program P

R

is the meaning of the inter-

pretation m of P +R:

M(P

R

) = M(m(P +R)):

In this case, the semantics of re
ection depends on the meta-interpreter. In this sense, replication-

based re
ection (which uses no meta-interpreter) is partial.

However, re
ection usually changes only a part of the program's semantics. If M(P

R

) is a

composition of the re
ection part M(P

R

)

R

and the original part M(P

R

)

P

:

M(P

R

) = M(P

R

)

P

+M(P

R

)

R

:

M(P

R

)

P

is a subset of M(P ). If M(P

R

)

R

is determined only by R, the meta-interpreter m is

not necessary. In this case, re
ection is fully represented. Otherwise, the re
ection is partially

represented. An example of partially represented re
ection is catch=throw (Fig.7).

T

0

2

T

2

T

1

Throw

Catch

Figure 7: Traces of Catch and Throw

There are three execution traces here. A context is caught after the execution of T

1

and is

thrown after the execution of T

2

. Then a new execution T

0

2

starts.

Unlike sequential environment, a concurrent object creates many activities. To recover a con-

text is not an easy task because all the created activities must be reclaimed. Since the object is

encapsulated, a context caught consists of the object's execution only, but the later throw a�ects

many descendant activities. Implementing catch=throw with a meta-circular interpreter is a very

di�cult task.

In the example shown in Fig.8, only a �nite number of primes are generated. In this case,

M(P

R

)

P

is a �nite subset of M(P ), and M(P

R

)

R

is an empty set. If another program is executed

after the throw, the trace of this execution depends on M(P

R

)

R

.

M(P

R

)

R

depends on the implementation of catch=throw. Re
ection is thus partially represented.

The re
ection would be fully represented if we wrote all the possible side e�ects of catch=throw

within the description of catch. The representation should then contain how local states of the

8



[object genartor

(state [�lter:=[�lter�class <== [:new]]]

[n :=1 ])

(re
ect

(state [priority := 1])

(script (=> [:priority p] [priority := (= 1 p)])))

(script

(=> [:generate]

(re
ect [�lter <= [priority: (+ p 1)]])

(loop [�lter <= [:check (incf n)]])))]

[object �lter�class

(script

(=> [:new]

![object �lter

(state next��lter)

(re
ect

(state [priority := 1])

(script (=> [:priority p] [priority := (= 1 p)])))

(script

(=> [:check n]

(output <== [:print n])

(next��lter := [�lter�class <== [:new]])

(re
ect [next��lter <= [priority: (+ p 1)]])

(wait�for�loop

(=> [:check m]

(unless (zerop (mod m n))

[next��lter <= [:check m]])))))]))]

Figure 6: Safe Re
ection

7



6 Safe Re
ection

First, we separate re
ective computation from normal computation syntactically.

P

R

= P +R

Here, P

R

is the re
ective program of P . R is the additional syntactical re
ective part. Here we

use ABCL/1 [13] as the base language and extend it with constructs for representing re
ective

operations. For example,

(re
ect(incfi))

is a re
ective statement.

The statement below is a projection of the re
ective program.

P = P

R

�R

Projection can be realized by de�ning re
ect statement as a null function.

Besides its syntax, the semantics of a re
ective program must also be separate the normal part

and the re
ection part. Such separation is similar to separation of control and logic in logic-

programming [4]. M(P ) is the meaning function of a program P . M(P ) is an instance of a program

execution. In concurrent languages, it represents the history of the states of the objects and the

history of messages. Not all those histories can be fully speci�ed in ABCL/1 because of its non-

deterministic execution. For simplicity, we assume a deterministic program semantics.

Let us consider a program P that generates prime numbers (Fig.6). For simplicity, we ignore

some messages that is not relevant to understanding the problem. M(P ), the semantics of P , can

be expressed by the output which is an in�nite set of prime numbers f2; 3; 5; 7; 11; 13; 17; :::g.

In parallel re
ection, only the rei�ed replication is visible in program P . We useR as a description

of the replication in program P . A re
ective program P

R

is a composition of P andR. (The operator

+ expresses composition.)

P

R

= P +R

If the original semantics is not a�ected by re
ection, we call it a safe re
ection. The operators +

and �, for composition and projection respectively, are also used here. M(P ) +M(R) is a union of

the trace of states and messages in both the re
ection part and in the normal part. A re
ection R

is safe if

M(P

R

) = M(P ) +M(R):

This means that the messages in the re
ection part does not interfere with those in the normal

level.

An example of useful safe re
ection is control of scheduling of objects (Fig.6). Assigning a �xed

(fair) scheduling priority to each object in program P is a re
ective operation. In this case, M(R)

consists of the set of assigned priorities and the messages required to setup these priorities. The

meaning of program P is not a�ected by the assignment but e�ciency is. The e�ect in e�ciency

cannot be seen in the program's semantics.

6



Part of Meta Object

Replication

Meta Object

Object

Causality

Figure 4: Replication Base Re
ection

We must specify the operational semantics of the approach clearly in order to make it useful in

spite of those errors. Replication errors are considered from the viewpoint of true re
ective causal

connection, but if they are well de�ned we can still use re
ection in a consistent way.

The separation between meta level description and object level description is clear in this ap-

proach because the rei�ed data in the object level can access only objects in the normal level. If the

language that describes the normal level computation supports multi-thread execution, the access

or synchronization procedure of rei�ed data can be represented in the normal level programming

construct. If the language that describes the normal level computation does not support multi-

thread execution, the synchronization procedure can be seen as a modi�cation of the normal level

data structure from outside of the language. In this case, the rei�ed data is actually a procedure

which has states. The description of the re
ected data is separated from the meta-interpreter.

However, usually, in order to determine a semantics of re
ection we still need a meta-interpreter.

In this scheme, the re
ective procedure is not suspended (Fig.5). A normal level program

will change its meta level data structure as a normal level data structure. These changes are

automatically re
ected into the meta-object after some delay, via replication. Conversely, a meta-

object can change a normal level program or data. In parallel re
ection, an object, its meta-object

Synchronization

Control Flow

Normal

Control Flow

Meta

Figure 5: Concurrent Execution of Meta-Objects

and the replication mechanism (casual connection) run as threads within one object.

5



in the normal level and that in the meta-level are di�erent, we cannot expect that the description

of concurrency in the former be also the description of concurrency that actually happens in the

latter. We must separate those two descriptions. The meta-circular interpreter approach does not

allow such separation.

Secure re
ection is necessary.

In the meta-circular-interpreter approach every part of the system can be re
ected and touched.

Re
ection in that approach is overly free. Such freeness cannot be tolerated in systems that require

strong security, as in operating systems. In a sense, this is a separation between description and

actual computation.

Original program and re
ective program must be clearly separated.

We can extend the power of a language by adding re
ective facilities into it. Re
ective facilities

are important, but the original semantics of the program is still the most important. The re
ective

part of a program is less portable than the normal part. Consider the example of a debugger. The

debugger essentially performs re
ective modi�cations into the original program but such modi�-

cations should not change the original semantics. Meta-interpreter approach is weak here, since

detailed meta-interpreter and its modi�cation are complex and the e�ects of the re
ection cannot

be separated.

5 Replication-Based Re
ection

The separation of meta level computation and normal level computation is blurred meta-objects

are accessed from the normal level. A normal level object should not touch a meta level object

directly. In this section we will introduce a new re
ection scheme, which we call replication-based

re
ection. In this scheme normal objects do not interact directly with meta objects.

We allow non-strict re
ection and use replication instead of rei�ed meta-object. Replication

is a copy of an object with automatic equivalence maintenance (Fig.4). In our communication

between meta-object and normal object is replaced by replication. Inter-level communication must

be treated separately from normal level message passing; it must be implemented using meta level

message passing. In order to keep a clear separation between the levels of computation, we do not

allow normal level messages to be sent to meta-objects.

When a re
ective statement is executed, �rst a new data structure is created. This data structure

is a normal level description rather than a meta-level one. The causal connection between a normal

level object and the corresponding replication is operationally de�ned in the meta level. Various

errors related to maintenance of replicated data may occur:

abstraction error: A re
ected data structure in the object level is the abstraction of a meta level

data structure, so it only represents a part of the meta level information.

synchronization error: Both the re
ected data in the object level and the meta-object may be

changed between two synchronization points, thus generating a replication error.

de�nition error: Since the synchronization procedure is de�ned in the meta level in an ad-hoc

way, it is prone to error.

4



Concurrent Access

Meta

Normal

Figure 2: Multiple Thread from Parallel Re
ection

Another important issue in parallel re
ection comes from concurrency between normal objects

and meta-objects. Consider a rei�ed data. Since computation of objects proceeds concurrently,

we must assure that the rei�ed data (e.g., a message queue) is not changed asynchronously by

the meta-objects. This requires some synchronization. Without synchronization, normal level

objects cannot access rei�ed data in a consistent way. (This problem does not arise in sequential

re
ection.) Introducing synchronization raises another problem related to causality: we cannot

assure that meta-level operations be immediately re
ected into the normal level. (Fig.3).

Rei�ed Parts

Meta

Normal

Figure 3: Concurrent Access to Rei�ed Objects

The above issues are common to concurrent languages that support re
ection. In a concurrent

programming language, the unit of concurrency is �xed, but once we introduce re
ective capability

into the language, additional �ner grain level of concurrency is required and this level cannot be

controlled from the normal level.

4 Manageable and Well-Separated Re
ection

Synchronization in the normal level must be separated from those in the meta-level.

The problems described in the previous section are products of the confusion between normal

level objects and meta level objects. For example, we can send a message to another message

which is an object in the meta level. Those two messages are of di�erent levels and might not be

confused. In the same manner, concurrency in the normal level and concurrency in the meta level

must be distinguished. The causal connection between di�erent levels of computation must include

the relationship between the granularity of objects of those levels. If the granularity of concurrency

3



� Meta-circular interpreter description,

� Control passing mechanism through levels of computation (normal computation to meta-level

computation, and so forth),

� Passing data between di�erent levels.

In Smith's approach[9], operations on di�erent levels are represented by explicit description of

continuation (e.g., normalize). In Friedman's approach [2], communication between levels is rep-

resented with two basic operations: rei�cation and re
ection. In the former control is transferred

from the normal level to the meta level and in the latter control is transferred from the meta-level

to the normal level (Fig.1). Computation in the normal level is suspended after control is passed

to the meta level. Changes to rei�ed data is not allowed in the normal level because they cause

errors.

Control Flow

Meta

Normal

Figure 1: Sequential Re
ection

3 Parallel Re
ection

How things change in a concurrent computational environment consisting of a lot of running ob-

jects? Quite naturally, a computation is described by several concurrent objects called meta-

objects[11]. There are three di�erent concurrencies:

� concurrency among normal objects,

� concurrency among normal objects and meta-objects,

� concurrency among meta-objects.

As the result of those concurrencies, the meta-objects are accessed in parallel. For instance, while

a meta-object is taking care of a normal object, another meta-object can accept interrupts.

Re
ection in a concurrent object system requires multiple threads within an object.(Fig.2).

Since re
ection changes the behavior of the meta-objects and meta-objects run in parallel, re
ection

happens in a multi-thread way. In this sense, normal objects can be seen as having multiple-threads.

Parallel re
ection cannot be strict.

2



Parallel Re
ection

Shinji Kono and Mario Tokoro

e-mail:kono@csl.sony.co.jp

Sony Computer Science Laboratory Inc.

3-14-13, Higashigotanda, Shinagawa-ku, Tokyo 141, Japan

February 13, 1991

1 Introduction

A manageable and separated re
ection scheme is presented here. Re
ection using meta-circular

interpreter worked well in sequential programming. But in parallel programming, granularity of

meta level computation is di�erent from that of normal level computation, and this di�erence can

cause errors in synchronization between normal level and meta level. Here we strictly separate

meta level computation from normal level computation, syntactically and semantically, in order to

solve this problem. We use \replication-based re
ection", re
ection without meta-interpreter, to

achieve this separation.

2 Sequential Re
ection

A programming language is a tool to describe computation. Since it uses �xed syntax and execu-

tion semantics, it usually has restrictions. For example, in Lisp, computation is applied to atoms

and lists only, and not to their textual representations. Re
ection is a method to overcome this

restriction. Re
ection allows manipulation of relationship between symbols and names. Computa-

tional re
ective system is de�ned as \ a computational system which is about itself in a causally

connected way "[5, 6]. It is a non ad-hoc way for extending systems. Re
ection is di�erent from

recursion. While recursion allows access to program in normal computation, re
ection allows access

to the system itself. Re
ection is also di�erent from partial evaluation of meta-interpreters. While

partial evaluation does not extend the program language itself, re
ection does.

In this paper, we focus on parallel re
ection: re
ective systems in concurrent or parallel program-

ming environment. Throughout this paper, objects are units of concurrency (like Agha's actors[1])

rather than units of program (modules), or Smalltalk objects. More precisely, an object consists of

several threads (activities, like Mach's threads[10]) and encapsulated data. The data is shared by

the threads and accessed in a consistent way. The simplest way of keeping consistency is applying

single thread restriction to objects.

In most computational re
ection schemes, causality is automatically satis�ed using a meta-

circular interpreter [9]. In such schemes, re
ection is sequential because the meta-interpreter has

only one thread. Those schemes have three important parts:

1


