
Synthesis of controllers from

Interval Temporal Logic speci�cation

Masahiro Fujita

�

and Shinji Kono

y

February 2, 1993

We present a method which accepts Interval Temporal Logic (ITL) formu-

las as speci�cation and automatically generates state machines. Since ITL is

based on intervals and their sequences, we can easily describe both concurrent

and serial behaviors by specifying behaviors inside intervals and sequences

among them. ITL formulas are expanded into the ones for the cases that the

present state is the �nal state of the current interval and those for the cases

that there is next state in the current interval, which can be easily converted

into state machines, by tabulated rules for temporal operators. The speci�ca-

tion in ITL can also be used as a constraint for a (possibly non-deterministic)

state machine which is an abstraction for an existing sequential circuit. In

that case, the �nal synthesized circuit satis�es the properties both in ITL

and the original state machine, which can be useful for redesign or engineer-

ing change. The generated state machines can be further processed by logic

synthesizer, such as SIS, and transformed into synchronous/asynchronous se-

quential circuits. We present experimental results and show the usefulness of

our method.

1 Introduction

Temporal Logic is an extension of traditional logic with temporal operators, which specify

allowed values of variables in multiple time frames. We can specify behaviors of digital

systems concisely using temporal logic just like we can specify combinational circuits using

traditional logic.

�

FUJITSU LABORATORIES LTD. Processor Lab. 1015 Kamikodanaka, Nakahara ku, Kawasaki

211, JAPAN, fujita@
ab.fujitsu.co.jp

y

Sony Computer Science Laboratory Inc. Higashi-gotanda, Shinagawa ku, Tokyo 141, JAPAN,

kono@csl.sony.co.jp

1

There have been many research activities on veri�cation based on temporal logic (ex-

amples are [1, 6, 3, 8]) and some are reported on synthesis. Synthesis from temporal logic

formulas means the automatic generation of state machines from temporal logic formulas.

In almost all cases it is based on tableau expansion: the property of temporal logic that

any temporal logic formulas can be expanded into ones for the current state and those for

the next state [14, 2]. Using this property, we can translate any temporal logic formulas

into state transition forms.

However, all methods reported so far use Linear Time Temporal Logic (LTTL in short

and its extension, Extended Temporal Logic, ETL in short) or Branching Time Temporal

Logic (BTTL in short). These logics have temporal operators such as, always; eventually; next,

and until. These operators are useful when we describe concurrent behaviors, such as

handshaking protocols, it is not easy to describe serial behaviors, which are common in

(serial) programming languages. The latter is necessary when we want to design practical

state machines, because almost always digital systems have serial behaviors in some way.

Interval Temporal Logic (ITL in short) is proposed and used to describe digital circuits

in [11]. ITL is based on the idea of intervals which are collections of states. Temporal

operators in ITL can specify allowed sequences of intervals and also allowed values of

variables among the states within an interval. So, we can easily specify both serial and

concurrent properties in terms of intervals in ITL.

There are several research activities on ITL. Interpreter and simulator for subsets of

ITL are reported in [7, 9]. However, there have been no literature on the synthesis from

ITL formulas. This is because there have been no tableau methods which can handle ITL

formulas completely and e�ciently.

In this paper, we present a tableau expansion method [8], assuming that every interval

is �nite, i.e., every interval must terminate. Using this assumption, we can directly expand

any ITL formulas into the ones for the case that the present state is the �nal state of the

current interval and those for the case that there is next state in the current interval. The

resulting ITL formulas form state transition relations, which can be further processed by

logic synthesizer, such as SIS.

The presented method can also be used to add a constraint to an existing design. In

other words, we can specify the constraint in ITL which we want to add to an existing

design in state machines and then synthesize circuits using that existing design and ITL

formulas, which is a kind of recti�cation or redesign of sequential circuits. Similar situa-

tions can happen in high-level synthesis where the detailed scheduling is not �xed and in

the synthesis of sequential circuits with don't care sequences [12]. In both cases, designs

have non-determinisms which can be restricted by adding ITL formulas for the constaints

to the designs.

We have implemented the above method using Prolog on PC notebook. This imple-

mentation demonstrates that ITL formulas much larger than trivial ones can be processed

2

within a practical time, even if PC notebook is used.

This paper is organized as follows. In section 2, we introduce ITL and show how to

specify serial and concurrent behaviors in ITL. In section 3, we present the expansion

method which generates state machines from ITL formulas. In section 4, we present

a redesign method for sequential circuits using ITL. Section 5 gives some experimental

results and section 6 is a concluding remark.

2 Interval Temporal Logic

Interval Temporal Logic[11] (ITL in short) uses a sequencing modal operator as its basis.

In this logic, it is very easy to express control structures in conventional programming

languages, (such as `;', while statement). First we show informal visual representation of

basic operators in ITL. Here we assume that there is a minimum unit of time and clock

is working on that time unit. System can change its internal state at each clock. Thus,

we use the terms clock and state interchangeably.

An interval can be viewed as a �nite line which has number of clock ticks. An operator

empty is true on the length 0 interval, and length speci�es the length of that interval.

emptylength(4) length(2)

A local (or atomic) variable p means p occurs at the beginning of the interval.

p

p

The next operator @P means P becomes true after one clock cycle (or in the next state).

Thus, in ITL, @P 's interval must be one clock cycle longer than P 's and @P is false on

the empty interval. We call this strongnext. We write weaknext
P as @P _ empty

where P can be any temporal logic formula.

@P

P

We introduce the chop operator `&' which combines two intervals. P&Q roughly means

\do P then Q".

P&Q

P Q

Using the chop operator we can express sometime 3 and always 2.

3

<> P

= true & P P

[]P

= ~(true & ~P)

P P P P P P

A projection operator creates coarse grain time using a repeated interval. P proj Qmeans

Q is true on a coarse grain time interval. In this interval clock ticks are de�ned by the

repetition of P .

Q

P P P P P P

P proj Q

Now we are ready to de�ne the semantics of ITL in a formal way. An interval is a

�nite sequence of states. An interval which is a part of some other interval is called a

subinterval. In a model of ITL, a series of states beginning from clock 0 to �nite future

time determines all the states of its subintervals. Such subintervals are determined by

two indices which de�ne the start and termination clock periods. So we use a mapping

function M

ij

: P ! fT; Fg which has two integer time indices, where i � j.

Here we use capital letter P;Q;R for temporal logic formulas and small letter p; q; r

for propositional variables.

M

ij

(T) = T (true)

M

ij

(F) = F (false)

M

ij

(p) = 8j: a variable p has a value T or F

M

ij

(P) Q) = T when M

ij

(P) = F or M

ij

(Q) = T

F otherwise

M

ij

(9p:f(p)) = for a free variable p in f(p), there is a mapping

function M

0

which contains a variable p

M

0

ij

(f(p)) = T

M

ij

(P&Q) = T when i � 9k � j;M

ik

(P) = T;M

kj

(Q) = T

F otherwise

M

ij

(@P) = T when i+ 1 � j;M

(i+1)j

(P) = T

F otherwise

M

ij

(empty) = T when i = j

4

F otherwise

M

ij

(P projQ) = there is a length n ordered sequence k of integer such as,

0 � 9n � j � i;8 r in 0::n� 1; i � k

r

� j; k

r

< k

r+1

This sequence is constrained by P,

M

k

r

k

r+1

(P) = T

Q is true on the coarse grain time;

8 s in 0::n there are some mapping functions M

0

rs

=M

k

r

k

s

M

0

0n

(Q) = T

M

ij

(local(P)) = T; if i � 8k � j;M

ik

(P) = M

ii

(P)

local(P) means P is independent of the termination clock period (i.e. P is only dependent

on local time). We use Local ITL since our variables do not depend on the termination

time. If the value of a variable is dependent on the termination time, the logic becomes

undecidable.

We shall use the following abbreviations,

P _Q � (:P)) Q

P ^Q � :(P) :Q)

P , Q � (P) Q) ^ (Q) P)

more � :empty

3P � T&P

2P � :3:P

P � @P _ empty

skip � @empty

length(n) � @@:::@

| {z }

n

empty

less(n) �

:::

| {z }

n

F

8P f(P) � :9P:f(P)

P&&Q � (P ^ :empty)&Q

� P � (P proj T) _ (empty ^ P) (closure)

fin(P) � empty) P

halt(P) � empty , P

The chop standard form is a formula which all these abbreviations have been removed.

Chop standard form may include variables and conjunction, disjunction, negation, chop,

projection and existential quanti�er operations.

Here we assume that every inerval is �nite. This makes a simple theorem, 3empty,

(every interval must include an termination point). Hence, its dual 2more is unsatis�able

5

since we cannot extend the interval inde�nitely. Later we prove that

(23P), (32P), fin(P);

from which we deduce ITL cannot express fairness. However, the decision procedure is

simple for �nite intervals.

2.1 Speci�cation in Interval Temporal Logic

In ITL, it is easy to express sequential execution and time out. We can describe a little

complex property like:

((less(5) ^3p ^3q) _ (length(6)&s))&2r

This means that p and q have to be done in 5 clock cycles, and after that r stays true

until the end of the interval. If p and q do not happen within 5 clock cycles, s is happen

before r.

Using proj , the repeated event and time sharing task are easily described as in [7].

The expression

(length(2) ^@3p) proj T

represents a process in which p happens every 2 clock cycles (its timing is not speci�ed).

T

@<>q @<>q @<>q @<>q
proj((@<>q,length(2)),
T)

Conversely some preemptable task p which takes 10 ticks can be represented as follows

T proj(length(4) ^2p)

proj(T,
([]p,length(4)) P1 P2 P3 P4

T T T T

p p p p p

Of course, we can add a time limit easily. For example, if task p has to be done before q

will happen:

((T proj(length(4) ^2p)) ^ keep(:q))&q:

3 Deterministic Tableau Expansion

In ITL, a temporal logic formula P can be separated into two parts: the current clock

period and the future clock period. This separation can be represented by a disjunctive

6

normal form with the empty and the @ (strong next) operators.

` P , (empty ^ P

e

) _

_

i

P

i

^@Px

i

A formula P is true on an empty interval if P

e

is true. In the case of a non-empty interval,

the required condition Px

i

at the next clock period depends on the current state condition

P

i

. P

e

and P

i

must not contain temporal logic operator. We call this separated form the

@�normalform. Each P and Px

i

represents a possible world, and which are connected

by a possible clock transition. To make all possible world, this transformation has to be

applied to the generated formula Px

i

repeatedly. Termination of this procedure will be

discussed in later section.

For example, @� normalform for p&q&r is

` p&q&r , (empty ^ r ^ q ^ p)

_ (r ^ q ^ p ^@T)

_ (:(r) ^ q ^ p ^@(T&r _ T&q&r))

_ (:(q) ^ p ^@(T&q&r)):

This @� normalform represents a non-deterministic state transition shown in Fig.1.

&%

'$

&%

'$

&%

'$

&%

'$

�

�

�

�

�

�

�

�

�

�

�

�

�*

-

H

H

H

H

H

H

H

H

H

H

H

H

H

Hj

p&q&r

T&r _ T&q&r

T&q&r

T

:(r) ^ q ^ p

:(q) ^ p

r ^ q ^ p

6

&%

'$

F

:p

Figure 1: State Transiton for Chop Operator

This separation is performed recursively on temporal logic operators in the formula.

For example, if we have two @-normal forms for P and Q then,

P = (empty ^ P

e

) _

_

i

P

i

^@Px

i

Q = (empty ^Q

e

) _

_

i

Q

i

^@Qx

i

7

The @-normal form for P&Q will be,

P&Q = (empty ^ P

e

&Q) _

_

i

P

i

^@Px

i

&Q:

The expansion is easy because we use non-deterministic state transition, but there is

a problem. Since we use @-normal form (which is a kind of disjunctive normal form)

negation becomes expensive. If P contains n disjunction then n-times normalization is

necessary to achieve @-normal form. This corresponds the fact that this transformation

generates non-deterministic transition.

However, if the conditions P

e

; P

i

do not overlap each other (i.e. if the transition

conditions P

e

; P

i

are deterministic) negation becomes very easy,

` :P , (empty ^ :P

e

) _

_

i

P

i

^@:Px

i

: (if P

e

; P

i

do not overlap each other)

We call @-normal form deterministic if the conditions P

e

and P

i

do not overlap. Fortu-

nately, it is possible to keep deterministic @-normal form in every tableau expansion of

an ITL operator.

Since P

i

and P

e

contain no temporal logic formulas then non-overlapped conditions

can be represented as a binary decision tree, in which leaves are ITL formulas. If the

condition contains n variables then each node has a maximum of 2

n

leaves. We do

not need to simplify P

i

; P

e

part, since the expansion is unique. In fact, for a binary

decision tree, P

i

; P

e

is represented by a path in the tree (i.e a set of variables and

empty or its negation). If we need two variables a; b for P

e

, the possible paths are:

[empty;+a;+b]; [empty;+a;�b]; [empty;�a;+b]; [empty;�a;�b]. Then We write @-form

for P like this:

P : [empty;+a;+b] ! P

e0

[empty;+a;�b] ! P

e1

[empty;�a;+b] ! P

e2

[empty;�a;�b] ! P

e3

[more;+a;+b] ! P

x0

[more;+a;�b] ! P

x1

[more;�a;+b] ! P

x2

[more;�a;�b] ! P

x3

! means a state transition here. P

ei

are T or F because it contains no temporal logic

operator or variables. P

xi

are temporal logic formulas, which label possible worlds as

states. In this way, the tableau expansion can generate a deterministic automaton. To

check the �niteness of the automaton, another normal form technique is necessary for the

leaves (which will be discussed in the later section).

For �xed P

i

; P

e

, the deterministic tableau expansion rules can be described as a boolean

operation on the leaves. Here we assume P 's leaf for an P

i

condition is more(P) and P 's

8

leaf for a P

e

condition is empty(P). If we meet a local variable p, a node is added to

the binary decision tree, that is, P

i

is changed into two leaves P

i

^ p and P

i

^ :p. Since

empty(P) contains no ITL operator, no variable and no connectives, empty(P) is T or F .

T

empty(T) = T

more(T) = @T

P ^Q

empty(P ^Q) = empty(P) ^ empty(Q)

more(P ^Q) = more(P) ^more(Q)

P _Q

empty(P _Q) = empty(P) _ empty(Q)

more(P _Q) = more(P) _more(Q)

:P

empty(:P) = :empty(P)

more(:P) = :more(P)

@P

empty(@P) = F

more(@P) = @P

P&Q

empty(P&Q) = empty(P) ^ empty(Q)

more(P&Q) = (empty(P) ^more(Q)) _ (more(P)&Q)

9yQ y is removed from leaf conditions

empty(9yQ) = (empty(y ^Q) _ empty(:y ^Q))

more(9yQ) = 9y((more(y ^Q) _more(:y ^Q)))

�(P)

empty(�(P)) = empty(P)

more(�(P)) = more(P)& � (P)

P proj Q

empty(P projQ) = empty(Q)

more(P projQ) = more(P)&(P projmore(Q))

These transformation rules are part of the complete axiom system in ITL. Soundness

of these transformations can be seen by checking the de�nition of the temporal logic

operators.

9

3.1 Expansion Example

The tableau expansion of p&q (where p and q are atomic variables) generates a tree with

6 leaves. For the empty condition we can replace & with ^. Then we have

empty ^ (p&q) : [empty;+q;+p] ! T

[empty;�q;+p] ! F

[empty;�p] ! F:

For the non-empty condition,

more ^ (p&q) : [more;+q;+p] ! T

[more;�q;+p] ! (T&q)

[more;�p] ! F:

The �rst line comes from empty(P ^ Q) _ (more(P)&Q) and empty(P ^ Q) = T . The

second line comes from empty(P ^Q) = F and more(P) = T .

3.2 Binary Subterm Diagram

During possible world generation, various kind of ITL formulas are generated. Unlike

LTTL or ETL [14], generated formulas contain more complex terms than the original

subterm. It is not easy to see the �niteness of generated formulas.

To overcome this situation, we introduce a binary subterm diagram. This contains

typed nodes:

� A triple ?(P;Q;R) is a binary decision node, in which if variable P is T then Q else

R.

� 9xQ, where x is a free variable.

� a numbered node for a unary temporal logic operator O(P). (ex. @; �)

� a numbered node for a binary temporal logic operator O(P;Q). (ex. &; proj)

Translation from ITL formula to binary subterm diagram is done in a bottom-up way.

For example, 32p is expanded into a chop standard form: T&:(T&:p). First :p is

translated into,

?(p; F; T):

Then we need a numbered node s

1

for the chop operator, such that,

s

1

= T&?(p; F; T):

Then the original formula is transformed into a numbered node, such that,

s

2

= T&?(s

1

; F; T):

10

After tableau expansion of this formula, we have a complex formula, (:(T&:p))_(T&:(T&:p)).

But the result of the transformation is simple (Fig. 2),

s

3

=?(s

2

; T; ?(s

1

; F; T)):

T

B

B

B

B

B

B

B

BN

�

�

�

��

�

�

��

Q

Q

Q

Q

Qs

S

1

F

F

F

T

S

2

= S

3

T

:((T¬(p))

| {z }

s

1

) _ T&:(T&:(p)

| {z }

s

1

)

| {z }

s

2

| {z }

s

3

Figure 2: Binary Subterm Tree

In this way, we can store generated formulas compactly in a binary subterm diagram.

As with the binary decision diagram, if we �x the ordering of nodes from top to bottom,

the form of a node becomes unique to the logical connectives such as negation, conjunction

or disjunction.

In other words, we regard each subterm as an independent variable and generate

Binary Decision Diagram using that variable. This results in a canonical form for sub-

formulas generated by tableau rules from a given temporal logic formula. So, we can

easily check whether the newly generated sub-formulas are those that have been already

processed or not. This is one of the key point in our implementation of our synthesis

program.

3.3 Termination of tableau expansion

If binary subterm diagrams contain �nite numbered nodes, a set of the binary subterm

trees must be �nite. During the tableau expansion, we generates a formula which contains

temporal logic operators. If this generated formula contains a new form of binary subterm

diagram in the argument of the operator then it may require a new node. However, we

can ensure that expansion of a given ITL formula only generate �nite variants.

Here we prove this for the proj operator. Others can be proved in the same way.

Suppose more(P);more(Q) generate �nite variant. In the tableau expansion of proj,

more(P projQ) = more(P)&(P proj more(Q));

it generates a new node for the chop operator and the projection operator. The former

part of the chop, more(P), can vary according to the variant. The latter part of the chop

11

Sequential circuits

Deterministic
state machines

Abstracted
state machines

Deterministic
state machines

1. State machine extraction
 (e.g. stg_extract)

2. Eliminate
 conditions

New constraints
in ITL

4. Make product

3. Presented synthesis method

Sequential circuits

5. Logic synthesis

State machines

Figure 3: Flow of Our Redesign Method

can vary according to the variant of more(Q). So the number of generated formulas is

less than the number of products of variants for more(P) and more(Q).

Since the tableau expansion generates a �nite number of binary subterm diagram

nodes, it generates only a �nite binary subterm diagrams. When we expand all binary

subterm diagrams, the expansion completes.

4 A Redesign Method for Sequential Circuits

We can simply use the method which generates state machine representation from any

ITL formulas as a procedure to synthesize state machines and hence sequential circuits

from ITL formulas. However, we cannot handle very complex ITL formulas within a rea-

sonable time, since the expansion time grows exponentially with the number of temporal

operators in the worst case. So, more practical situation is to use ITL formulas as a

partial speci�cation for the system being designed. In other words, we assume a (possibly

non-deterministic) state machine as a skeleton of the required design and add necessary

constraints to it in terms of ITL formals. In this scenario, we do not have to handle very

complex ITL formulas. Instead those are represented as state machines abstracted from

existing circuits and ITL formulas are only given for the remaining properties which must

be satis�ed by those state machines.

This redesign method for sequential circuits are shown in Figure 3. The (possibly non-

deterministic) state machines can be obtained from existing sequential circuits. First we

12

extract state machines from given sequential circuits by the procedure such as stg extract

in SIS (1. in Figure 3). Then the conditions for variables which must be modi�ed

are eliminated from the generated state machines. This process generates possibly non-

deterministic state machines in the sense that the eliminated constraints for variables

are not sensed and controlled (2. in Figure 3). Then we provide ITL formulas for the

speci�cation of the eliminated variables so that they satisfy the required properties. These

ITL formulas are expanded into state machines (3. in Figure 3). In this stage, we have

two di�erent state machines, one is obtained from the existing sequential circuits, and the

other is obtained from ITL formulas. By making the product of these two state machines,

the resulting state machine is the one we wanted, i.e., the one which satis�es both the

properties in the extracted state machine and the ones in ITL formulas (4. in Figure

3). The �nal state machine can be logic synthesized and the desired sequential circuit is

obtained (5. in Figure 3).

The above is a straight forward way to redesign an existing circuit and the �nal circuit

can have completely di�erent circuit structure, which cannot be a�ordable in some case.

If we want a sequential circuit which satisfy the new constraints but whose structure are

similar to the existing circuit, we can use the method presented in [4, 13, 5, 10]. By

using these method, we can obtain a �nal circuit which has a very similar structure, e.g.,

a circuit having most part of the original circuit, or a circuit having only small extra

circuit.

5 Implementation and some results

The current implementation has been written in Prolog (s.t. C-Prolog or SICStus Prolog)

and is very short (730 lines).

Standard forms are used for both the conditional part (classical propositional logic

formula) and labelling formula (binary subterm diagram). So ad-hoc simpli�cation is not

necessary. This implementation includes X window interface too.

The synthesized state machine for (length(2) ^ @3p) proj T is shown in Figure 4.

The CPU time for this expansion only takes 1.3 seconds on PC notebook with 16MHz

386 chip. As you can see from the �gure, some transition has no conditions. This can be

considered that the generated machines only satisfy partial requirements. By making the

product between this and a state machine which is an abstraction of an existing design,

we can get the �nal design. For example, suppose we have an existing design as shown

in Figure 5. In this circuit the ouptut is q. Now suppose we want to modify the output

value of q as follows: when transitioning from state S0 to S1 and from S2 to S3, the

output value q must be 0. Otherwise, the output q must be one every 2 clock cycles. In

this case, �rst we modify the existing design in Figure 5 to the one shown in Figure 6.

Here only the necessary 0 value for q is speci�ed. Then we compute the product of the

13

1 2 3

4

q
q

q

true true

Figure 4: Synthesized state machine for (length(2) ^@3p) proj T

S0 S1

S2S3

ab / q

c / q

c / q

ab / q
a+b / q

a+b / q

c / q

c / q

Figure 5: An existing design

machines shown in Figure 4 and Figure 6 and get the �nal state machin which satis�es

the requirement for q. From the state machine we can synthesize the �nal circuit using

the recti�cation methods shown in [4, 13, 5, 10].

Exapansion of a more complex formula,

((less(5) ^3p ^3q) _ (length(6)&s))&2r

takes 17.7 seconds on PC notebook to be expanded. The number of the generated states

is 28. As can be seen from this expansion, rather complex formulas can be expanded

within practical time on PC notebook.

We will show practical size examples including the synthesized sequential circuits in

the �nal version of the paper.

6 Conclusions

We have presented a synthesis method which generate sequential circuits from ITL formu-

las. We have also shown a redesign method for sequential circuit which has, we believe,

14

S0 S1

S2S3

ab / q

c / -

c / -

ab / -
a+b / q

a+b / -

c / -

c / -

Figure 6: Modi�ed design: some conditions for output q are eliminated

practical values in real designs.

Although our method requires exponential computation in terms of the number of

variables and the depth of the temporal logic operators, its computation is linear to the

number of the generated states due to binary subterm diagrams. Hence it works well for

the complex formulas if it does not include many variables and temporal operators, which

are common cases when we apply our method to redesign.

Our program can work and process practical examples on PC notebook. So, if we

install logic synthesizer, such as SIS, on PC notebook, we can easily do redesign for

sequential circuits out of o�ce. This can be important, since redeign can be a collection

of many trial and errors, and designers may want to do them at home.

References

[1] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang. \Symbolic model

checking: 10

20

states and beyond". In Proc. of the Fifth Anual IEEE Symposium on

Logic in Computer Science, Jun. 1990.

[2] E.M. Clarke and E.A. Emerson. \Synthesis of Synchronizatoin Skeletons from

Branching Time Temporal Logic". In Proc. of the Workshop on Logics of Programs,

LNCS-131, Springer-Verlag, 1982.

[3] G.G. de Jong. \An Automata Theoretic Approcah to Tempotal Logic". In Proc. of

Computer Aided Veri�cation, Jul. 1991.

[4] M. Fujita, T. Kakuda, and Y. Matsunaga. \Redesign and automatic error correc-

tion of combinational circuits". In Proc. of IFIP Working Conference on Logic and

Architectural Synthesis, May 1990.

15

[5] M. Fujita, Y. Tamiya, Y. Kukimoto, and K.C. Chen. Application of Boolean Uni-

�cation to Combinational Logic Syn thesis. In Proceedings of IEEE International

Conference on Computer-Ai ded Design, pp. 510{513, Nov. 1991.

[6] M. Fujita, H. Tanaka, and T. Moto-oka. \Logic Design Assistance with Temporal

Logic". In Proc. of IFIP WG10.2 International Conference on Hardware Description

Languages and their Applications, Aug. 1983.

[7] R. Hale. \Temporal Logic Programming". Technical Report PhD thesis, Computer

Laboratory, Cambridge University, 1988.

[8] S. Kono. \Automatic veri�cation of interval temporal logic". In Proc. 8th British

Colloquium for theoretical computer science, Mar. 1992.

[9] S. Kono, T. Aoyagi, M. Fujita, and H. Tanaka. \Implementation of temporal logic

programming language Tokio". In Proc. Logic Programming Conference, LNCS-221,

Springer-Verlag, 1985.

[10] Y. Kukimoto and M. Fujita. \Recti�cation Method for Lookup-Table Type FPGA's".

In Proc. of ICCAD-92, pp. 54{61, Nov. 1992.

[11] B. Moszkowski. \Reasoning about digital circuits". Technical Report STAN-CS-83-

970, Dept. of Computer Science, Stanford University, Jul. 1983.

[12] J-K. Rho, G. Hachtel, and F. Somenzi. \Don't care sequences and the optimization

of interacting �nite state machines". In Proc. of EDAC-91, pp. 418{421, Feb. 1991.

[13] Y. Watanabe. \Minimization of Multiple-Valued Relations". Technical Report

UCB/ERL M91/48, Electronics Research Laboratory, University of California,

Berkeley, May 1991.

[14] P. Wolper. \Synthesis of communicating processes from temporal logic speci�ca-

tions". Technical Report STAN-CS-82-925, Dept. of Computer Science, Stanford

University, 1982.

16

