
2ITL: Logic which has a process as a value of a variable

Shinji Kono

Information Engineering, Univesity of the Ryukyus

E-Mail: kono@ie.u-ryukyu.ac.jp

Abstract: A process is a value of a variable

of higher order interval propositional tempo-

ral logic (2ITL here after). Not only temporal

relation-ship among events, but also processes

are directly de�ned in terms of temporal logic.

The process includes �nite state machine, fair-

ness, a scheduling mechanism, inverse speci�-

cation, and various temporal logic formula.

1 Second Order Tempo-

ral Logic

In normal temporal logic, variables represents

events depending on a clock period like other

Temporal Logics. But in Interval temporal

logic (Ref. [3] ITL here after), variables repre-

sent series of events in intervals of time. Value

of 2nd order variable is an arbitrary formula.

We call ITL with 2nd order variables 2ITL.

In case of classical logic, second order

propositional logic is trivial, because the value

of the 2nd order variable is either T or F . For

a formula f(P) with 2nd order variable P and

propositional variable p, we can prove

` f(p) i� ` f(P):

There are no di�erences between second order

logic and normal logic from the view point of

validity.

The same situation happens in ITL.

` f(P) i� ` f(p)in ITL:

If-part is trivial becase p is a possible inter-

pretation of P . In the other direction, for

an interpretationM

�

1

:::�

n

of Kripke structure,

truth value of P is �xed, M

�

1

:::�

n

(P). �

1

:::�

n

is n length interval. This is a truth value fuc-

tion of �

1

:::�

n

. If we use this fuction for de�n-

ing truth value of p, f(p) is true from the as-

sumption. So f(P) is true.

This proof works only on full ITL, which is

undecidable[3]. A possible restriction of ITL

is local ITL. In local ITL, truth value of every

variable is determined at the �rst clock of the

interval. Clearly we cannot have the truth

value fuction of �

1

:::�

n

for a local variable.

This means 2nd order variable have to be an

interval variable, which value changes on each

interval.

Since full ITL is undecidable, in this paper,

we'll show some restrictions which makes ITL

decidable.

2 Speci�cation Examples

A second order variable represents a mecha-

nism to terminate an interval. It is possible

to think it a fairness.

3

S

P � S&P

3

S

P means P is eventually true on fairness S,

eventuality-S. Unlike fairness in LTTL, many

kinds of di�erent fairness can be de�ned in

2ITL. In fact the value of second order vari-

able is di�erent on each clock period, so it

de�nes di�erent fairness on each clock period.

We can think this is an abstraction of watch

dog timer or counter. The mechanism of the

timer can be de�ned in terms of ITL;

a

(S = less(2))

a

P means P is true on all sub-interval.

This means S assures an interval which is less

than 2 clocks. less(n) operator can be de-

�ned using n-times nested weak next opera-

tor; less(2) �

empty. This is a simple

watch dog timer mechanism (Fig. 1).

Main Specification

Timer

Figure 1: External Timer

1

Of course, we can use second order variables

to de�ne a process by recursion like process

algebra.

a

(P ! ((a ^
P) _ (b ^ :a ^ empty))

But we have to consider the restrictions of sec-

ond order variables in these process represen-

tations in case of veri�cation.

3 Undecidability from a

View Point of Tableau

Expansion

In this section, we discuss on a tableau

method of 2ITL. In Tableau method on dis-

crete temporal logic, temporal logic terms are

decomposed into two parts. One part is de-

pending only on current clock period and the

other part only depends on next or later in-

terval.

Here we show an example of decomposition

of a chop operator. Assume P;Q is already de-

composed into empty parts PE;QE, current

clock dependent parts PN

i

; QN

i

and next in-

terval dependent parts PX

i

; QX

i

in disjunc-

tive normal form.

P = PE ^ empty _

W

k

i=0

(PN

i

^@PX

i

)

Q = QE ^ empty _

W

k

i=0

(QN

i

^@QX

i

)

Where @ is next operator with :empty and

it is called strong next. Then P&Q is decom-

posed in this way.

P&Q = (PE ^Q)_

W

k

i=0

(PN

i

^ @(PX

i

&Q))

In practical tableau expansion, BDD standard

form and deterministic expansion is necessary,

but these are discussed in (Ref. [1, 2]).

In case of second order variable or interval

variable, the value of the variable is depend on

the both begin-time and end-time of the in-

terval. Since we are working on propositional

case, it looks like we can replace the value of

the variable by T or F . Yes, the value is T

or F , but the value depends on the interval

(Fig. 2). So we cannot replace the second or-

der variable with T or F as we did in classical

logic.

This situation is demonstrated by an exam-

ple:

a

(R = length(2))

If we replace R by T or F , this example be-

comes unsatis�able. But this is satis�able if

T

F

T

F

T

F

T

F

T

F

Seond Order Variable

Local Variable, True, False

Figure 2: Value of second order variable

we instantiated R by length(2) or equivalent

FSM.

If we think R as a FSM, tableau expansion

should have next form.

R = (empty ^ R

0

) _ @R

0

R

n

= (empty ^ R

n

) _@R

n+1

R

R
1

R R R2 3 4R
0

R

n

is n-th state ofR. R

n

is also a second order

variables. R

n

is independent each other if n

is di�erent. This is because R

n

has di�erent

start point and R has di�erent truth value in

di�erent interval. Using existential quanti�er

on second order variable, we can write;

R = (empty ^ R) _ @ 9S S:

During the tableau expansions, n increases

in�nitely. Actually n represents the interval

length of R. In case of a formula like 2R, in-

�nitely many R

n

are generated. In this way,

undecidability of full ITL or 2ITL happens in

the tableau expansion.

3.1 Length Restriction and

Count Restriction

The simplest stopper of the undecidability is

length limit.

R = empty ^R

0

^@R

0

R

n

= empty ^R

n

^@R

n+1

if n < k

R

n

= beg(R

n

)if n � k

R behaves normal in less than length n in-

terval and after the limit it is �xed to T or

F .

R

n

is generated on every clock. But if we

have only one R

n

, we don't have to use spe-

ci�c n. Any other number is also ok. We can

compact the number sequence by sort and re-

naming. But the order of the number have

2

to be preserved. After renaming, n represents

number of R

n

in a formula. We can call this

restriction count limit. The count limit is use-

ful on a formula like this:

R&T:

In this example, R

n

increases n by 1. This

generates a series like this.

R&T;R

1

&T;R

2

&T; :::R

n

&T

If we think R and R

1

are equivalent, this ex-

ample is expanded to itself. Roughly speak-

ing, in count limit method, we have no limit

on one time R-eventuality.

3.2 More Complex Restrictions

But above restrictions does not work well on

a formula like T&R that is 3R. In this ex-

ample, expanded formula has a form after n

clocks;

R

0

_ R

1

_ ::: _ R

n

_ T&R:

After R

n

reaches the limit, it becomes T or F .

In this case, renaming of R

n

becomes iden-

tity and useless. Looking at the formula care-

fully, we �nd every R

n

exists only once. The

meaning of this formula is not depends on the

particular name of R

n

and R

n

is independent

each other. It is possible to remove R

n

from

the formula. This is called singleton removal.

Here we show several restriction methods

on decidable 2ITL;

length limit E�ects of R has time limit,

count limit Number of R is limited,

singleton removal Number of interrelated

R is limited.

These are de�ned in an operational way in the

tableau expansion.

Computational complexity of 2ITL veri�-

cation is determined by the restriction. Lo-

cal ITL veri�cation requires exponential com-

plexity of the length of the formula, that

mostly comes from determination of expanded

states. In the worst case, all combination of

the sub terms have to be computed. R

n

terms

increase the number the sub term, as result in

e�ect of 2

n

. In our experience, count limit is

slightly faster than length limit.

4 Execution of 2nd Order

Interval Temporal Logic

In the tableau expansion based veri�cation

(Ref.[2]), a deterministic FSM is generated.

This is a method of logic synthesis or pro-

gram generation. In case of Local ITL, all

variables are events. An execution of 2ITL

is simple. Besides conditions on events vari-

able, it also contains conditions on second or-

der variables. The conditions depend on the

restriction methods.

Length limit is the most simple one. It con-

tains two kind of events on R.

termination R is terminated in T or F in

less than length n interval.

time out the limit of R expired and results

T or F .

These are marks on the FSM and de�ne FSMs

for R on each clock period. It also de�ne a

trace of R in the execution.

In case of count limit, we have to consider

renaming of R

n

. Other situation is similar

to the length limit case. The renaming is

assigned to each transition in the generated

FSM. Using renaming information, we can

�nd a FSM de�nition of R on each clock pe-

riod.

4.1 Example: Length Operator

and Second Order Variable

We can demonstrate the di�erence of length

limit and count limit by using simple example:

R ^ (R = length(10)). Here we assume limit

is 5. length(10) is expressed by nested strong

next operator and this becomes the �rst state.

state 1 R ^ @@@@@@@@@@empty

In case of length limit, it is expanded in this

way;

state 2: R

1

^ @@@@@@@@@empty

state 3: R

2

^ @@@@@@@@empty

state 4: R

3

^ @@@@@@@empty

state 5: R

4

^ @@@@@@empty

state 6: R

5

^ @@@@@empty

state 7: @@@@empty

state 8: @@@empty

state 9: @@empty

state 10: @empty

state 11: empty

In state 5, R

6

's truth value is �xed. R

6

is false

entire formula is false otherwise @@@@empty

remains. The resulted state diagram is show

in (Fig.3).

3

F
empty

F
empty

F
empty

F
empty

F
empty

F
empty

F
empty

F
empty

F

empty

not empty

over(r,5)

not over(r,5)

F
empty

F
empty

F
empty

F
empty

F
empty

F
empty

F
empty

F
empty

F

empty

not empty

T

T

Length Limit

down(r,1)

not down(r,1)

Renaming

Figure 3: FSM for Length Example

4.2 Example: Grammar Rules

or Recursive Process

A 2ITL formula,

R^

a

((R! ((a^@R)_ (:a^ b^ empty))))

represents a grammar rule or CCS like pro-

cess. But we are using discrete time and it

use

a

operator, the veri�er generates rather

big FSM.

| ?- ex(

(^r,'[a]'((^r -> ((a,@ ^r);

(~a,b,empty)))))).

76.817 sec.

128 states

22 subterms

264 state transitions

yes

| ?- exe(5).

0:+a-r^0 3

1:+a-r^0-r^1 67

2:+a-r^0-r^1-r^2 99

3:+a-r^0-r^1-r^2-r^3 115

4:-a+b+r^0+r^1+r^2+r^3+r^4 0

yes

| ?- exe(10).

no

+a means a is T and -a means a is F .

exe(10) requests at least length 10 example

and it has no solution because of count limit

5. The solution should be a Regular Expres-

sion a*b, but we cannot �nd out the solution

because of the undecidability of 2ITL.

5 Comparisons

Several methods has been developed for real-

time speci�cation.

� Timed automaton

� Process Algebra

� Higher Order Logic

� Temporal Logic

Timed automaton can be a basic model of

real-time speci�cation. Process algebra pro-

vides a program oriented syntax by recursion

style. Temporal logic provides natural lan-

guage like and declarative syntax of speci�ca-

tion.

In process algebra, all processes are de-

�ned by recursions. Propositional temporal

logic cannot describe recursions, but 2ITL

can. Chop operator's role is very important

here. If we use LTTL and Until operator, even

if we use second order variable, recursive pro-

cess is not expressed. But recursion is not a

perfect because of our second order variable

restriction.

Corresponding part of veri�cation in pro-

cess algebra is complex hierarchy of bi-

simulation. Since 2ITL is logic, failure set and

success set is compliment of each other. This

corrupts the hierarchy of bi-simulation, and it

is de�ned as temporal logic relation.

6 Future direction

Current method works well on small exam-

ples, but we cannot say it is practical. It

requires huge computation to verify second

order variable and the expressiveness of the

variable is restricted. This is because we are

concentrated on a FSM based automatic veri-

�cation and easy restriction. One possible di-

rection is to construct theorem prover on for

example HOL. The other direction is to �nd

out more practical restrictions.

References

[1] Masahiro Fujita and Shinji Kono. Synthe-

sis of Contrllers from Interval Temporal

Loigc Speci�cation. International Work-

shop on Logic Synthesis, May 23-26, 1993.

[2] Shinji Kono. A Combination of Clausal

and Non Clausal Temporal Logic Pro-

gram. In Executable Modal and Tempo-

ral Logics, volume LNAI-897. Springer-

Verlag, 1994. Lecture Notes in Arti��cial

Intelligence.

[3] B.C. Moszkowski. Executing temporal

logic programs. Technical Report 55,

Computer Laboratory, Univ. of Cam-

bridge, 1984.

4

