
Persistent Process with Log-Structured File System

叶 萌
Meng YE

河野 真治
Shinji KONO

琉球大学 理工学研究科 情報工学専攻
Department of Information Engineering, University of the Ryukyus

概 要
We design persistent processes on top of the BSD/OS Log-Structured File System(LFS).

It can be used as a fast hibernation mechanism for a Note PC. The swap area of the process

is put on the LFS, which enables faster recovery time and safer system o�. This requires

extra copy from the changing process memory space to the swap space, which is done by

special daemon process.

1 Introduction

The concept of persistence may be de�ned as

the attribute of data which speci�es its period

of existence. In conventional Operating System,

services are separated into �les and processes,

and only �les are persistent. This separation

works well for simple applications such as ed-

itors, but it is no longer suitable for complex

service such as Presentation tools.

For example, a Presentation may contains

several pictures and text �les. Each pictures

and text �les are coupled together by the tool

and these couplings are meaningless without

particular tool. Since the presentation itself has

complex states such as it-is-in-presentation or

it-is-in-edit. Giving persistency for each com-

ponents is not useful in this case.

A conventional solution is that the applica-

tion programmer de�nes complex �le format in-

cluding pictures, text and application states as

di�erent objects. Each object is associated with

other objects by the object attributes. But the

result of these solutions are plenty of di�erent

complex �le formats. This is a disaster.

Persistent process gives another solution. In-

stead of de�ne complex �le formats, an Operat-

ing System provides a persistent process
ame

work. We can communicate with persistent

application with conventional inter- application

communication such as cut and paste, or print.

In systems that support persistence, if an inter-

process communication protocol is agreed, the

application programmer don't have to manage

the movement of data between di�erent data

formats. We don't need complex �le formats,

only the proper set of inter-application commu-

nication protocols are necessary.

Persistent process is important from other

point view. Many of Note PC supports hiberna-

tion mechanism, which enables complete power

o� during o�-duty to save battery power. It

is usually implemented by registers and memo-

ry copy to the disk of Note PC. But it requires

hundreds megabytes of copy which takes several

minutes. In case of failure, for example, battery

o� during disk copy, entire saved state is lost.

The persistent process architecture is used as a

hibernation mechanism for a Note PC. Based

on this architecture, the current processes ex-

ist in physical memory and virtual memory are

|1|

recovered easily and quickly in the event of sys-

tem failure. Copying to the disk is performed

during normal computation idling instead of the

last minutes before battery empty.

Recovery from hibernation can be faster by

using persistent process. Because we don't have

to restore entire process memory, OS can leave

unnecessary persistent image in the disk. Con-

ventional hibernation mechanism requires copy

of entire physical memory which may be 128M-

bytes or more.

This paper describes a new persistent pro-

cesses architecture based on LFS. LFS is a �le

system based on logging structure. It provides

a safe storage for The resilient persistent pro-

cesses data. The storage enables faster recovery

time and safer system o�.

A daemon is designed to manage the move-

ment of process data between the memory and

the swap area put on the LFS. It supports full

address space i.e. it supports persistent virtual

memory.

2 Persistent Process

Persistence describes something that exists

beyond its expected lifetime or that lasts after

program completion. It is a mechanism to trig-

ger saving or restoring the object state, either

automatically or on a command.

Persistence is usually implemented by pre-

serving the state of an object between execu-

tions of the program. To preserve the state of

the object, the object is put on some kind of

long-term storage media (usually a disk). This

copy can be a partial or incremental copy, but

the saved states have to be consistent, which

means it have to be equal to the copy of entire

process memory. This timing is called check-

point and we call the saved image snapshot.

The persistence of process is di�erent from the

LOAD and SAVE behavior. Persistent process-

es are removed from active state and its saved

image are copied to the �le system. This is

Dirty Block

Dirty Block (New Block)

Empty Block

...

図
1 Log-Structured File System

called FREEZE. Frozen persistent processes be-

come active by attaching saved image to the

swap and active process list. This is called

MELT. Instead of LOAD or SAVE, persistent

processes are FREEZE or MELT.

3 Swap on LFS

Basic idea of this persistent process
ame

work is to use swap space which implement the

imaging from memory to Log-Structured File

System (LFS is used in the left part).

Log-Structured File System improved the �le

system performance by storing all �le system

data in a single, continuous log. It is optimized

for writing without seek. It is also optimized for

reading, because all data within �les are stored

continuously on disk.

LFS stores the disk data blocks in a single,

continuous log structure. In LFS, the disk is

laid out in segments. Each segment consists of

a summary block followed by data blocks and

inode blocks. LFS is described by a superblock

similar to the one used by FFS. The super block

is replicated and occurs as the �rst block of each

segments.

The swap space of a persistent process is a �le

on LFS. Unlike normal swap, this swap must

contains complete snapshot of the process. Of

course we don't have to copy read-only part or

shared program text. Since LFS provides con-

|2|

.

.

.

.

Swap
Space

Process

Process

Process

Memory Daemon
Checkpoint

File
System

LFS

図
2 Persistent Process on LFS

tagious write, it is suitable for snapshot. But if

we keep track every small modi�cation of pro-

cess memory, system becomes very slow.

4 Checkpoint Daemon

Snapshot is done by several minutes, like up-

dated in Unix. A special daemon is used to im-

plement checkpoint for memory space. It copies

the modi�ed part of persistent process memory

space to the swap space on LFS. We use two

special signals. Checkpoint daemon send weak

snapshot signal. The weak snapshot signal do

checkpoint when the persistent process is idle,

or the process is running, checkpoint will not be

proceeded. Another signal is force snapshot. It

do checkpoint after process suspension. Snap-

shot and process activity are racing each oth-

er. If a process modi�es large amount memory

continuously, the process have to be stopped to

make consistent snapshot.

5 Freeze, Melt and Recovery

Process

Active

Process

Frozen

Memory

Freeze

Melt

Disk

図
3 Freeze and Melt

Freeze and Melt is somewhat like Suspend and

Resume. Suspend signal remove a process from

active queue and the process becomes suspend s-

tate. Freeze also remove the process from active

queue, but it also removed from process queue

itself. Checkpoint are performed and its image

are no more active swap. It becomes a �le. It

is incompatible with other OS like binary com-

mand. To make a copy among di�erent OS's,

some Inter-application communication protocol

is required.

The frozen persistent process is melted to be

active process. The process is put in active

process queue and the process image �le is at-

tached to the process swap. There is no instant

copy of entire process image which can be very

large. Copy is done by demand driven and vir-

tual memory mechanism do the job. We don't

have to restore a process behind a window im-

mediately.

In case of system failure or recovery from hi-

bernation, all persistent process are melted from

its LFS swap. It is not necessary the latest one.

The latest consistent snapshots are recovered.

Partially snapshot-ed process are easily checked.

Since these are written in contiguous segment of

the disk.

|3|

Process

Process

Process

.

.

.

.

.

.

File Descriptor

File Descriptor

BA

A B

Checkpoint

Recovery

Disk

File
System
(LFS)

図
4 File Descriptor Reconnection

6 File Descriptor Reconnection

After melt or recovery, resuming activity is

not enough. Meaningful process have to com-

municate with other process, such as X-Window

and its clients. Unix uses File Descriptor to de-

scribe the �le opened by the current process.

The �le may be all kinds of formats - i.e. a �le

exists in the disk, pipe, network, I/O, etc. We

have to reconnect all these connection. Con-

nections should be preserved among persistent

process. Connection between persistent process

and non-persistent process can be lost.

To connect �le descriptors, procfs is used to

store the states of process. /proc/1234/fds/3

means �le descriptor No. 3 in process No. 1234.

If it is connected �les it becomes a symbolic link

to the target such as a �le or other �le descrip-

tor. Status of �le descriptor including pseudo

tty status have to be included in the snapshot

of the persistent process.

When daemon stores memory by checkpoint,

the File Descriptor of each process should be s-

tored, so that the File Descriptor can be rebuilt

in the event of recovery.

7 Fast Recovery for Hibernation

Many UNIX operating systems use Fast File

System. When FFS write a data to disk block,

several pieces of information need to be modi-

�ed: the block, the inode, the block map, and

the location of the last allocation. If the sys-

tem crashes, the FFS must rebuild the entire

�le system state, including the block map and

meta data. And FFS need to check the �le sys-

tem structure and block pointer. Traditionally,

fsck is the agent that performs those operations

in FFS.

LFS adds the new data block to the end of the

log. So data in LFS are never overwritten. LFS

used a checkpoint approach to store current �le

system state.

The traditional Unix �le systems store all da-

ta in �les randomly, so the contiguous data in

the �le may be stored in the uncontiguous disk

blocks. In the event of system crash, the hiber-

nation mechanism on top of traditional Unix �le

system spends much time to seek the data de-

scribe the last memory state. In LFS, all data

in �les are stored contiguously on LFS, so the

data seeking takes less time than traditional U-

nix �le system. Taking advantage of it, a fast

hibernation mechanism can be implemented for

Note PC.

8 Conclusion

Persistent process with LFS can provides uni-

form interface for complex application. It also

makes fast hibernation and fast recovery. We

are implementing Persistent Process Framework

on top of BSD/OS.

参考文献
[1] Seltzer, M., Bostic, K., McKusick., M., Staelin, C.

A Log-Structured File System for UNIX, Proceedings

of the 1993 Winter Usenix Conference.

[2] David Hulse, and Alan Dearle, A Log-Structured

Persistent Store, Proceedings 19th Australasian

Computer Science Conference, 1996.

[3] Mendel Rosenblum, The Design and Implemen-

tation of a Log-Structured File System (Kluwer In-

ternational Series in Engineering and Computer Sci-

ence), Kluwer Academic Pub, ISBN:0792395417.

|4|

