
Object Oriented Load Distribution in DinnerBell

S. Kono, K. Tatsukaway, T. Aoyagiz, Y. Kohdax, H. Tanaka�

Sony Computer Science Laboratory Inc.

E-mail: kono@csl.sony.co.jp

3-14-13, Higashi-Gotanda, Shinagawa-ku, Tokyo 141, Japan

yNEC Corporation

zDepartment of Computer Science and Information Mathematics,

The University of Electro-Communications

x FUJITSU LIMITED IIAS-SIS

* Department of Electrical Engineering, The University of Tokyo

Abstract

Here we describe an object-oriented language based on fine-
grained parallelism. This language, called DinnerBell, is based
on single-assignment rule and data driven execution. We use
messageJoin as a synchronization mechanism. DinnerBell is
implemented using micro-message technique. DinnerBell also
uses a new method called object-oriented load distribution. This
method works like a macro data flow, however, it works auto-
matically and is much more controllable. The simulation results
of this method are also examined.

1 Fine-Grained Parallel Language: Din-
nerBell

DinnerBell [kohda84] is a fine-grained parallel object-oriented
programming language. It is designed to achieve high software
productivity from its object-oriented feature and high execution
performance from its fine-grained parallelism.

Several parallel object-oriented languages have been pro-
posed [Yonezawa87, Yokote87, Ishikawa87]. However, they are
based on coarse-grained parallelism and their objects are single-
threaded. This reduce parallelism and controllability of objects.
As in Fig1, some of them introduced multiple threads in rather
ad hoc way, with message priorities and express messages.

The concept of dataflow is considered to be effective for
introducing fine-grained (and high) parallelism within an object.
Dataflow machines have been extensively investigated in the past
decade. Hardware prototypes have also been operational (e.g.,
[Shimada87]). Several programming languages for dataflow ma-
chines (e.g., [Ashcroft86]) and fine-grained parallel programming
languages (e.g., [Ueda85, Steele87] have also been developed.

0

Object A

Object B
Object C

B/A Thread

B/C thread

Fig. 1: Multi-threaded Objects Interaction.

Some of them employ a combination of dataflow concepts and
object-oriented concepts. Such combination has also been tried in
some macro dataflow languages [Grimshaw87, Kaiser87]. These
languages allow multiple activities within objects. DinnerBell’s
approach is unique in that it provides fine-grained execution.

The key concepts in DinnerBell are (1) the single-assignment
rule which enables parallel execution within an object and (2)
messageJoin which creates a consistent state in fine-grained par-
allel execution. Our language is a pure message-passing based
language with synchronization primitive, like [Ward80]. The
major modification is the addition of the synchronization mecha-
nism messageJoin. The approach of fine-grained parallelism used
in DinnerBell also appeared in [Zhong87] which has Dataflow
constructors such as loop.

In fine-grained parallel execution, we must achieve low com-
munication overhead. DinnerBell uses a new approach for load
distribution in multi-processors namely object-oriented load dis-
tribution (hereafter called OO-distribution). This paper examines
the simulation results of this method.

1.1 Fine-Grained Parallelism

Our approach is to remove unnecessary side-effects. In Dinner-
Bell all variables have single-assignment nature, i.e. they are
pure and free of side-effects. A a dataflow graph is constructed
dynamically, during execution. In order to express process com-
munication we need some kind of non-determinism or side effects.
Necessary side effects are introduced by a non-deterministic tech-
nique called messageJoin. Although many languages use guard
as a synchronization primitive, our approach is different. The
advantage of our approach is that non-determinism is separated
from conditional statements. States and side-effects can be
implemented by the messageJoin.

DinnerBell =
single-assignment variable (pure part) +
messageJoin (side-effect part)

Usually merge or serialization is used in concurrent object-
oriented languages [Yoshida88, Agha87], but they restrict objects
to be single-threaded. Of course, the pure part is easily executed
in fine-grained parallelism.

class Add [
inc:X * #1 ret: (X +:1)
]

Fig. 2: Simple Program.

Fig. 2 shows a simple program written in DinnerBell. The
method inc: in class Add increments the argument X and returns
the result to the sender of the message. * states for the sender
of the message. A square bracket separates the message pattern
from the method’s body.

ret: Z(Add inc:Y
The ret: keyword can be omitted because a syntax sugar that

simulates assingment is provided (see Fig.3). But actually, there
is no assignment because there is no change of values.

Fig. 3 shows the dataflow graph generated by the message
passing program of Fig. 2. Since +: is a primitive message, it
corresponds to a plus node in the dataflow graph.

Y
Z[Y+1]

Z(Add inc:Y
[inc:X *(X +:1)]

Control Flow

Data Flow

Fig. 3: Dataflow Graph.

1.2 Non-Determinism and State Implemented
with MessageJoin

Here we show a usage of the messageJoin technique. Fig. 4
is a simple program that has state. The class Register has three
methods:

read!�content: accepts read-requests and returns the content,

write:�content: accepts a write value and changes the content,

new: creates an instance of this class with new content.

There is no distinction between class methods and instance
methods in DinnerBell. The first message sent to a class always
causes instance creation. The new: method creates an instance and
then sends a message content: to self. The default destination of
message passing is self. Message-passing to self, a programming
style of Smalltalk, is like a function call within a class.

class Register [
new:X content:X
read!�content:X * #1 ret: X.content:X
write:New�content:X * #1 ret: X. content:New

]

Fig. 4: Register.

The second and third methods use the messageJoin mecha-
nism. If both the messages read! (unary message) and content:
arrive at the object, the second method read!�content: fires.
When several corresponding messages are available, one mes-
sage is selected non-deterministically. For example, if many
read! messages and many content: messages arrive at the object,
one read! message and one content: message are selected, and
these messages fire.

In Register, object’s state is represented by method variables.
Sending the message content: changes the state of the object.
The first method, new:, decides the initial state of the object.
Method read!�content: returns the current state to the sender of
the message read! (the sender of the first message is * #1), and
sends the message content: with the same state to self. * #1
and self are both pseudo variables. In DinnerBell, the default
destination of a message sending is self, so we can omit the
self pseudo variable here. * #1 denotes the sender of the first
of joined messages, and * #2 denotes the second. The method
write:�content: sends a content: message with a new state to
self. This causes change of the state.

This simple Register object is an example of transaction in
DinnerBell. Here is a possible usage of Register. First a register
object is created. Then two transaction access the register. Since
there are no serial executions in DinnerBell object, the order of
two transaction is non-deterministic. Value of the variable X can
be 0 or 1.

R (Register new:0.
X (R read!.
Y (R write: (Y +: 1)

In Fig. 5, objects first interact by messageJoin, then commu-
nicate each other by dataflow and pure message.

Object A

Object B
Object C

Join

Dataflow

Fig. 5: Dataflow Objects Interaction.

1.3 Examples

We have shown three simple examples of the DinnerBell program.
These examples are used in the simulation of the object-oriented
load distribution.

1.3.1 Sum

The Sum program in Fig. 6 calculates the sum of a sequence
of numbers. The calculation is based on applying divide-
and-conquer method to a binary tree generated previously.
Sum from 0 to: 1000 starts the program.

class Sum [
from: X to: Y

(X <>: Y)
yes:(* (

(Sum from: X to: ((X +: Y) /: 2)) +:
(Sum from: (((X +: Y) /: 2) +: 1) to: Y)))

no:(* X)
]

Fig. 6: Sum.

1.3.2 Quick Sort

The quick sort in Fig. 7 and Fig. 8 shows how to use simple list
nodes. A prefix ~ means an itBlock variable, an instance variable
in DinnerBell. We sometimes call this ‘‘itVar’’ for short. Other
variables are method variables(‘‘mVar’’ for short). The class
NULL and Node represent lisp cells in a non-destructive data
structure. The class Split first splits a list into two pieces, then
computes the recursive procedure qs. Three classes Generate,
split and qs work together in pipeline. Notice that an if-then-else

structure is constructed as a nested class definition. Each block
has a default message pattern; eval!, like in Smalltalk. qs qs:100
generates a list of 100 random numbers and sorts it.

class NULL [
isNull! * TRUE ;
append: Tail * Tail ;
print: Dest

]

class Node [
isNull! * FALSE;
cons: ~Car and: ~Cdr ;
car! * ~Car ;
cdr! * ~Cdr ;
append:Tail
* (Node cons: ~Car and: (~Cdr append: Tail)) ;

print: Dest ~Cdr print: ((Dest write:~Car) write: " ")
]

Fig. 7: List Node.

1.3.3 N-Queen

The class Q in Fig. 9 solves the N-Queen puzzle. This rather
complicated example is used in evaluation of OO-distribution.
Q run: 6 starts six queen puzzle.

2 Execution Model - micro-message

To execute our language, we use a set of communication units
called micro-messages. A micro-message is a unit smaller
than normal message passing. There are three types of micro-
messages, as shown in table 1.

argument passing unit,
Destination Selector: Argument Reply ReplySelf

dereference request,
Dereference Destination Source

reply.
Reply Value Destination

Table 1: Three types of micro messages.

The DinnerBell compiler decomposes the source program
into micro-message passing. Each (normal) method definition is
compiled into micro method definitions (Fig. 10), which have only
one argument. Synchronization constructs are also compiled in
the same way, using a special side-effect object called $manager.
This is the side-effect part of DinnerBell.

The execution of a micro-message is very simple. Assume
there are several micro-message sendings. They are enqueued in
each processor element (hereafter called PE) or are transmitted
from another PE. A PE picks up one of these messages and

class Split [
split: ~S of: List

* high: (high: List). * low: (low: List) ;
high: List

(List isNull!)
no: (((List car!) >: ~S)

yes: (* (Node cons: (List car!) and:
(high: (List cdr!))))

no: (* (high: (List cdr!))))
yes: (* NULL) ;

low: List
(List isNull!)

no: (((List car!) <=: ~S)
yes: (* (Node cons: (List car!) and:

(low: (List cdr!))))
no: (* (low: (List cdr!))))

yes: (* NULL)
]

class qs [
sort: List

(List isNull!)
no: (

high: H low: L(Split split: (List car!) of: (List cdr!).
* ((qs sort: L) append:
(Node cons: (List car!) and: (qs sort: H))))

yes: (* NULL)

qs: N
list1(Generator to: N using: 103. list2 (qs sort: list1.

]

Fig. 8: Quick Sort.

class NULL [
cantake: aQueen * FALSE ;
print: N StdErr write: N nl!
]

class Queen [
x: ~X y: ~Y ;
link: ~Next ;
x! * ~X ;
y! * ~Y ;
isNull! * FALSE ;
cantake: aQueen

(((~Y =: (aQueen y!))
or: ((~X +: ~Y) =: ((aQueen x!) +: (aQueen y!))))
or: ((~X�: ~Y) =: ((aQueen x!)�: (aQueen y!))))

yes: (* TRUE)
no: (* (~Next cantake: aQueen)) ;

print: N ~Next print: ((N *: 10) +: ~Y)
]

class Q [
check: ~previousQueens at: ~N till: ~limit

(~N =: ~limit)
yes: (~previousQueens print:0) no: (y: 0) ;

y: M
(M =: ~limit) no:(y: (M +: 1) .
aQueen(Queen x: ~N y: M.
aQueen link: ~previousQueens.
(~previousQueens cantake: aQueen)

no: (Q check: aQueen at: (~N +: 1) till: ~limit)) ;
run: ~limit

check: NULL at: 0 till: ~limit
]

Fig. 9: N-Queen.

searches for the appropriate method definition. If it is a primitive
message passing, it is executed. Otherwise it prepares for the
necessary local work area (method variable) and instance
variable (itBlock variable). Sometimes an object work area is
inherited from its parent object. The size of the instance variable
is determined by the DinnerBell compiler and described in a
micro method definition. These work areas are allocated in this
PE, and are not transferred to another PE. Then the PE enqueues
the body of the method, i.e. the set of micro-message sendings.
Some or all of them are transmitted to another PE.

itVar,mVar SizeRSRnumber of Args

Selector:
Selector:
Selector:
Selector:

RSRDestinationArgSelector:
Selector:Arg Destination RSR

RSRDestinationArgSelector:
Selector:Arg Destination RSR

RSRDestinationArgSelector:

Fig. 10: Micro method definition.

An object in this execution scheme is represented in Fig. 11.
Theobject has its own class id and two data arrays or environments
succeeding its outer class. They are called mVar and itVar,
respectively.

mVar0

mVar2

mVar1

itVar2

itVar1

itVar0

J

J
Ĵ

�

�

�

�

��

mVarsitVars

Class

Object

Fig. 11: DinnerBell Object Representation.

The advantages of this execution model are,

1. Fixed-size token fits to the current processor communica-
tion.

2. Parallelism is gained in argument passing.

However there are several disadvantages, such as,

1. An argument passing becomes expensive without some
hardware support.

2. The execution sequence becomes independent of program
sources.

3. Some of gained parallelism is rather imaginary.

We do not think this is the best implementation of DinnerBell.
An implementation by a variable-size normal message is also ap-
propriate to DinnerBell, and OO-distribution can also be applied.
There are several languages which accept arguments of variable
length. Our micro-message is designed to simulate a dataflow to-
ken and not to use variable-length arguments. In other words, our
execution model is an extension of dataflow. Compared with an-
other dataflow execution of object-oriented language [Zhong87],
our execution model is based on a much simpler concept. For
example, our system does not need any lock syntax. Moreover,
assuming single-assignment rules and recursion-style implemen-
tation of states, DinnerBell is more radical than other dataflow
object-oriented languages (see [Grimshaw87, Kaiser87]). Using
these simple and attractive features we have achieved an effective
parallel implementation, as shown in the next sections.

3 Object-Oriented Load Distribution

In this section, we propose an object-oriented load distribution
technique. This method mostly uses the object-oriented nature
of DinnerBell. Load distribution is important in object-oriented
languages because usually an object contains large amount of
data that cannot be moved easily from one PE to another PE. We
emphasize that this load distribution technique can be generalized
for any fine-grained parallel MIMD language, because all have
some object-oriented characteristics.

In DinnerBell the destination of a message has a type. This
is represented by a tag in this implementation. The types of
destination are:

Class Creating new object,

Variable Unbound variable in some PE,

Object May have ItVar and mVar array as shown in Fig.11,

Local Class BLOCK or ITERATION, pseudo variable for a
nested object,

Assignment Local class without message passings.

Primitives Such as ARRAY, STRING, FLOAT, and INT.

Load distribution is determined by this classification.

3.1 Three Methods of Load Distribution

Here we show three load distribution algorithms. Each PE picks
up one micro-message and decides its destination using these
algorithms with no global information about load distribution.
The first method (Fig. 12) is only for reference. It uses rotated
transmission of micro-messages. Since the number of micro
messages cannot be estimated, we can consider this method as
a random distribution. The outline of the algorithm is shown
in a simplified C language. In this method we may have max-
imum parallelism, however it produces many dereference/reply
messages, consequently causing communication bottleneck.

Random() {

if ((i = next_pe++)>max_pe)

next_pe = 0;

return i;

}

Fig. 12: Random Load Distribution.

In this random distribution, the object structures are fully dis-
tributed in the PEs. Temporary variables and permanent variables
of an object can reside in different PEs. This makes possible
to execute a program totally in parallel; however, the result-
ing numerous interprocessor linkages generate many dereference
messages (see Fig. 13, iv means itVars and mv means mVars
here).

PE4

PE3

PE2
PE1

mv
mv

iv

Fig. 13: Object Location in Random Load Distribution.

Another distribution algorithm is shown in Fig. 14. The
previous algorithm ignores the location of the existing destination
object. It is necessary to reduce the dereference/reply micro-
messages. This distribution traces an object’s reference, so
we call this a reference distribution. This algorithm is rather
complicated, because if the destination is an object we have to
determine its actual location:

1. If, as in the first case, the destination is a variable, the
processor sends this micro-message to the PE to which the

variable is allocated. If, as in the second case, the destination
is an object, a processor checks whether or not this message
is an assignment.

2. A message passing is an assignment only if it does not
produce any other messages or side-effects. (This is checked
by the compiler). An assignment message is treated only in
the destination PE.

3. Otherwise, if the object is local (i.e., a nested object or a
class made by compilation of micro-message), the processor
sends this message to the PE of the method variable array.
This is because local class is a part of its parent object, and
the probability of sending a message to an object that has
the same method variable environment is high.

4. If the object is a normal object, the micro-message is sent
to the PE to which the object is allocated.

5. Otherwise, if message is sent to a class or another primitive,
the sending is done randomly.

In this distribution, each message passing is executed in the
location of its permanent variable. However, some of the primitive
message passing are exported with their temporary variables.
The major effect of this distribution is reduction of dereference
messages (see Fig.15).

PE4

PE3

PE2

PE1

mv
iv

mv
mv

iv

mv

Fig. 15: Object Locations in Distribution for Reference.

The last distribution method, called object-oriented load dis-
tribution (OO-distribution), is based on modifications of reference
distribution. In this case, however, only two types of message are
going outside: (1) the object creation message and (2) message
whose destination is located outside.

In this distribution method, we expect to reduce unnecessary
message passings, with the result that there will be no parallel
execution in an object. All the objects are closed in its PEs
(see Fig. 17). The distribution is made only at object creation.
None of the primitive message passings are exported. In order
to get parallelism, it is necessary to create separate objects, and
message passing are then executed in parallel according to their
distribution. In other words, this method only supports data

Reference(message) {

pe = pe_of(message.destination);

switch (type_of(message.destination)) {

case Variable:

return pe;

case Object:

if (sending_for_assignment(message)) return pe;

if (sending_to_local_class(message.destination))

if (have_methodvar(message.destination))

return pe_of_methodvar(message.destination);

else

return self_pe;

else

if (have_itvar(message.destination))

return pe_of_itvar(message.destination);

else

return self_pe;

default:

return Random();

}

Fig. 14: Distribution for Reference.

Object(message) {

switch (type_of(message.destination))

case Class:

return Random();

case Object:

case Variable:

return Reference(message);

default:

return self_pe;

}

Fig. 16: Object-oriented Load Distribution.

parallel execution. This distribution will be effective in the
situation of a low-calculation cost and high-communication cost.

In the above three distribution methods, we use neither
global information nor additional information except the program
source. This makes our language simpler and more controllable.
A programmer can design the distribution strategy by designing
the object structure in the program.

4 Implementation and Simulation

In this section we show the simulation results of our language
and distribution method. Simulation of the parallel computer
architecture is very difficult. The result of the simulation does

PE4

PE3

PE2

PE1

mv mv
iv

iv
mvmv

mv mv
iv

mv
mv iv

Fig. 17: Object Location on object-oriented load distribution.

not give actual speed, but only a qualitative result.

4.1 Implementation Model

In this simulation, we use a simple multi-processor model as
shown in Fig.19. Each processor has its own local memory and
communicates with each other only by passing messages through
the network. The network transmission unit and receiving unit
work in parallel with micro-message execution unit. The network
assumption is also simple. We assumed the network to be flat,
that is, with no locality. A multistage network is an example of
such a network. This architecture assumption is general, as in
[Dally87].

Micro-message execution time is based on a micro-message

?

Time

Receiving Unit

6

?

@

@

@

@

@

@

@

@

@R

Network Delay

@

@

@

@

@

@

@

@R

Transmission Unit

6

?

Transmission
Time

Fig. 18: Time Chart of Simulation.

interpreter on MC68000 (0.5Mips) micro-processor and a multi-
stage network LSI. Our assumptions are (1) one processor takes
1.39 ms to execute one micro message, (2) 350 �s to suspend
one micro-message, (3) network delay 10 �s, (4) network trans-
mission time 20 �s for one micro-message. For the 6-Queen
program, our system (16 parallel processors) has almost the same
speed compared with the assembler program in Vax11-730 (0.2
Mips) with these assumptions. These assumptions are realistic
enough for estimation purposes. Transmission time determines
throughput of the networks. On the other hand, network delay
means latency only. These timings are shown in the simulation
time chart as (Fig.18). In the multi-staging network, we can
get a high throughput with a rather large delay. In data-driven
architecture like ours, as shown in a later section, the network
delay is not an important factor, so the multi-staging network will
be effective in our system.

We used three different kinds of test program. (1) Sum: A
computation of the sum of 1 to 1000 by divide-and-conquer.
This program has well separated parallelism, and shows the
maximum capability of our system. (2) Quick Sort: Sorting of
100 random numbers in a list. This program is a stream-oriented
program. Though it does not have much parallelism, we can see
the effect of pipeline execution from this example. (3) 6-Queen:
Finding all solutions of the 6-Queen puzzle. This is the most
complicated program in this simulation. It has some parallelism
and communication problems in it since it shares rather big
objects.

Fig. 20,21 and 22 show processor utilization. Utilization is an
average of effective micro-message execution units during whole
computation. If there is no overhead in parallel computation,
the average is the same as the number of processors, that is, the
graph is linear. The linearity of average almost corresponds to
speed-up in parallel execution. If parallelism in a program are

all used, the average is independent to the number of processors.
It is a constant. The saturation in this graph means saturation of
speeding up. These graphs show real parallelism in the problem.

In this simulation, the cost of communication is rather low, so
that we can get high parallelism in random distribution. All three
types of distribution strategies show the same utilization, and it
reflects the parallelism of the program. This means that we do
not loose parallelism in the problem using OO-distribution.

Total utilization is 40 � 50%, which is not so high. This
is partially because of the tree structure of the program, and
partially because our system does not search empty processors.
In an actual system, some mechanism such as load balancing
information will be necessary, but in this simulation the effect of
the OO-Distribution is important. So we omit this information.
Such a mechanism will make the utilization higher, but will not
help to solve the communication bottle-neck.

In spite of poor utilization, the increased speed of this system
is good. Even with 64 processors, the speed-up is not saturated
except for the relatively low-parallelism program Quick Sort.

Sum

Quick Sort

Six Queen

Effective number of Processors

No. of PEs0

10

20

30

0 10 20 30 40 50 60

Fig. 20: Number of PE vs. Mean Effective PE: random
distribution.

Sum

Quick Sort

Six Queen

Effective number of Processors

No. of PEs0

10

20

30

40

0 10 20 30 40 50 60

Fig. 21: Number of PE vs. Mean Effective PE: reference
distribution.

4.2 Evaluation of Network Delay

Network delay is not so serious in a highly pipelined system. In
other words, we can see the effect of network delay as a test for
the effect of pipeline execution (See Fig. 23,24,25). Among the
three test programs, the Quick Sort program is the most pipelined
program. For the other two, the three distribution strategies give

6

-

-

�

Pool
Message

Micro

Executor
Message

Micro

Network

6

mitter

Receiver

Trans-
?

�

-

�

-

Fig. 19: A simple multi-processor model.

Sum

Quick Sort

Six Queen

Effective number of Processors

No. of PEs0

10

20

30

40

0 10 20 30 40 50 60

Fig. 22: Number of PE vs. Mean Effective PE: OO distribution.

us the same result. However, in the Quick Sort program, only OO-
distribution shows a flat curve. The distribution strategies other
than the OO-distribution have some redundant transmissions.
This causes disturbance of the pipeline effect.

Random

Reference

OO

Execution Time x 103

Delay in usec
0.00

20.00

40.00

60.00

0.00 5.00 10.00 15.00

Fig. 23: Network Delay vs. Execution time: Sum.

4.3 Evaluation of Network Throughput

The good results in Fig.20 depend upon high throughput com-
munication. What about a low throughput network? In this
case we expect a linear dependency between execution time and
network transmission time, because in most multi-processor sys-
tems there are communication problems. This occurs especially
in large systems such as a 64-processor system. However, our
simulation results give us a surprise (See Fig. 26,27,28). In the
OO-distribution we can see almost flat curves. This means that, in

Random

Reference

OO

Execution Time x 103

Delay in usec
0.00

50.00

100.00

0.00 5.00 10.00 15.00

Fig. 24: Network Delay vs. Execution time: Quick Sort.

Random

Reference

OO

Execution Time x 103

Delay in usec
0.00

5.00

10.00

15.00

0.00 5.00 10.00 15.00

Fig. 25: Network Delay vs. Execution time: 6-Queen.

our system where network transmission time is 40�sec, we have
no communication bottle-neck as shown in Fig. 29. These results
are of course problem dependent; nevertheless, three different
types of this test program give us the same result. Our distribution
strategy can extract enough parallelism from the structure of the
program. The results reflect the nature of the parallel execution
structure of the test programs.

Random

Reference

OO

Execution Time x 103

Send-time in usec
0.00

20.00

40.00

60.00

0.00 10.00 20.00 30.00 40.00 50.00

Fig. 26: Network Transmission time vs. Execution time:Sum.

Random

Reference

OO

Execution Time x 103

Send-time in usec
0.00

50.00

100.00

150.00

0.00 10.00 20.00 30.00 40.00 50.00

Fig. 27: Network Transmission time vs. Execution time:Quick
Sort.

Random

Reference

OO

Execution Time x 103

Send-time in usec
0.00

50.00

100.00

150.00

0.00 10.00 20.00 30.00 40.00 50.00

Fig. 28: Network Transmission time vs. Execution time:6-Queen.

5 Conclusion

In this paper we introduced a new parallel object-oriented lan-
guage. DinnerBell and an object-oriented load distribution strat-
egy. We consider this language to be an object-oriented one
not only because of its class-method syntax but also because
of its object-oriented distribution strategy. Why does the OO-
distribution give us a good result? There is a simple reason. If we
have separate data on separate processors, we can work on these

Transmission Time

Calculation neck

Communication neck

Effect of OO-distribution
,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

#

#

#

#

#

#

#

#

#

#

#

#

#

Execution Time

-

6

-

S

So

6

@

@I

Fig. 29: Bottle neck in object-oriented Load-Distribution.

data in parallel. OO-distribution will map each object onto sepa-
rate processors during execution and messages that depend on the
object will not be sent outside. Therefore, the processor can work
in parallel, in a low communication frequency between objects.
OO-distribution makes it possible to minimize the communica-
tion bottle neck. The actual effect of this method is an extraction
of data parallelism from our fine-grained parallel programming
language. OO-distribution can be applied to other fine-grained
parallel architectures. If we can construct well-designed parallel
computer architecture for the micro-message system, this will be
the best parallel architecture.

References

[Agha87] G. Agha and C. Hewitt. Concurrent programming
using actors. In Object-Oriented Concurrent Pro-
gramming. MIT Press, 1987.

[Ashcroft86] E. A. Ashcroft. Dataflow and eduction: data-
driven and demand-driven distributed computation.
In Current Trends in Concurrency, LNCS 224.
Springer-Verlag, 1986.

[Dally87] W.J. Dally, A. Chien L. Chao, S. Hassoun, W. Hor-
wat andJ. Kaplan, P. Song, B. Totty, and S. Wills.
Architecture of a message-driven processor. In
14th Comp. Arch. Conf. Procs., pp. 189--196.
IEEE, 1987.

[Grimshaw87] A.S. Grimshaw and J.W.S. Liu. Mentat: An
Object-Oriented Macro Data Flow System. In
OOPSLA 87, pp. 35--47. ACM, 1987.

[Ishikawa87] Y. Ishikawa and M. Tokoro. Orient84/K: An
Object-Oriented Concurrent Programming Lan-
guage for Knowledge Representation. In Object-

Oriented Concurrent Programming. MIT Press,
1987.

[Kaiser87] G.E. Kaiser. MELDing Data Flow and Object-
Oriented Programming. In OOPSLA 87, pp. 254--
267. ACM, 1987.

[Steele87] G.L. Steele and W.D. Hillis. Connection Machine
LISP: Fine-Grained Parallel Symbolic Processing.
In 1986 ACM Conf. on LISP and Functional Pro-
gramming, pp. 279--297. ACM, 1987.

[Shimada87] T. Shimada, K. Hiraki, and K. Nishida. Evaluation
of a prototype data flow processor of the sigma-1
for scientific computation. In Proc. of 13th Annu.
Symp. on Computer Architecture, pp. 267--234.
IEEE, 1987.

[Ueda85] Kazunori Ueda. Guarded Horn Clause. Technical
Report TR-103, ICOT, Jan. 1985.

[Ward80] S.A. Ward and R.H. Halstead. A syntactic theory
of message passing. J. ACM, Vol. 27, No. 2,, 1980.

[Yoshida88] Kaoru Yoshida and Takashi Chikayama. A’UM -
a stream-based concurrent object oriented language
-. In Proc. of the Int. Conf. on Fifth Generation
Computer Systems. ICOT, 1988.

[Yonezawa87] A. Yonezawa, E. Shibayama, T. Takada, and
Y. Honda. Modeling and programming in an
object-oriented concurrent language ABCL/1. In
Object-Oriented Concurrent Programming. MIT
Press, 1987.

[Yokote87] Y. Yokote and M. Tokoro. Concurrent Program-
ming in ConcurrentSmalltalk. In Object-Oriented
Concurrent Programming. MIT Press, 1987.

[Zhong87] Y. Zhong and M. Sowa. Towards an Implicitly
parallel Object Oriented Language. In Procs. of
Compsac 87, pp. 481--485, 1987.

[kohda84] Y. Kohda , S. Kaneko , H. Tanaka and T. Moto-oka.
An Overview of Parallel Object Oriented Language
DinnerBell Technical Report SF-11-3, IPSJ, 1984.
(in Japanese)

