基本ゲート回路

学籍番号 045713C：大城 和也
グループ B：メンバー
045711G：上原 祐亮
045712E：大城 和輝
045715K：大城 悠

実験施行日：平成 17 年 5 月 31 日 (火)
提出期限：平成 17 年 6 月 7 日 (火)

1 実験目的
現代社会に欠かすことのできないコンピュータは、大規模なディジタル回路によって構成されている。本実験では、ディジタル回路の構成要素である基本ゲート回路と論理演算の基礎を習得することを目的とする。また本実験では、NAND ゲートを用いて他のゲート回路 (NOT, AND, OR, NOR, XOR) を構成することによって、汎用ロジック IC の基本的な使い方についても学ぶ。

2 実験方法
2.1 NAND ゲートをのみを用いて、NOT、AND、OR、NOR、XOR ゲートを設計せよ。
真理値表から式を導き、変形して NAND だけで表す。

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
2.2 上記の実験で設計した各ゲートを実際に NAND ゲート IC を用いて実現し、それらの動作を確認せよ。

前回実験で求めた式を元にブレッドシートと NAND ゲート IC、発光ダイオードを用いて回路を実現し、その動作を電流を流して確認する。（この時、NAND ゲート IC は使わない回路であっても入力端子は必ず、グラウンドが電源につなげておく）なお、電流を流した際、ダイオードが点灯したときに '1' を表し、点灯しなかった時を '0' とする。

3 報告事項

3.1 各実験について結果を報告しなさい。

3.1.1 NAND ゲートのみを用いて各ゲートの設計

• \(\overline{A} = \overline{A + \overline{A} \cdot \overline{A}} \)

\[\text{図 1: NOT} \]

• \(A \cdot B = \overline{A + B} \)

\[\text{図 2: AND} \]
• \(A + B = \overline{A} + \overline{B} = \overline{A \cdot B}\)

\[\text{図 3: OR}\]

• \(A \cdot B = \overline{A + B} = \overline{A \cdot B}\)

\[\text{図 4: NOR}\]

\[\overline{A \cdot B} + A \cdot \overline{B} = \overline{A \cdot B} + A \cdot \overline{B} = (\overline{A \cdot B}) \times (A \cdot \overline{B})\]

\[\text{図 5: XOR}\]

3.1.2 前実験で設計した各ゲートを実際に NAND ゲート IC を用いて実現し、動作の確認をせよ
図 6: NOT

図 7: AND
図 8: OR

図 9: NOR
これらの設計した回路は先に記してある真理値表通りの結果となった。

3.2 2変数の論理関数は全部で16種類ある。何故16種類になるか説明せよ。また、2変数の論理関数を16種類全て列挙し、否定（NOT）、論理積（AND）及び論理和（OR）のみを用いて表現せよ。

2変数の論理関数は \(f(X_1, X_2) \) と表せられる。この時、\(X_1, X_2 \) 及び \(f(X_1, X_2) \) の値は‘0’か‘1’の2通りであり、その事より入力の組み合わせは \(2^2 = 4 \) 通りである。さらに、その入力の組み合わせ一つ一つに対する出力も2通り、よって全体の出力の種類は \(2^4 \) となり、2変数の論理関数は全部で16種類あることが分かる。ちなみに、\(n \)入力における論理関数の全種類は \(2^2^n \) で表すことができる。

以下に2変数における全種類の論理関数の真理値表をと図を示す。

表6: 2変数の論理回路その1

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

図11: 2変数の論理回路その1
表 7: 2 変数の論理回路その 2

<table>
<thead>
<tr>
<th>入力 A</th>
<th>出力 f</th>
<th>入力 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

図 12: 2 変数の論理回路その 2

表 8: 2 変数の論理回路その 3

<table>
<thead>
<tr>
<th>入力 A</th>
<th>出力 f</th>
<th>入力 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

図 13: 2 変数の論理回路その 3

表 9: 2 変数の論理回路その 4

<table>
<thead>
<tr>
<th>入力 A</th>
<th>出力 f</th>
<th>入力 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

図 14: 2 変数の論理回路その 4
表 10: 2 変数の論理回路その 5

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

![図 15: 2 変数の論理回路その 5](image)

表 11: 2 変数の論理回路その 6

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

![図 16: 2 変数の論理回路その 6](image)

表 12: 2 変数の論理回路その 7

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

![図 17: 2 変数の論理回路その 7](image)
表 13: 2 変数の論理回路その 8

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

図 18: 2 変数の論理回路その 8

表 14: 2 変数の論理回路その 9

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

図 19: 2 変数の論理回路その 9

表 15: 2 変数の論理回路その 10

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

図 20: 2 変数の論理回路その 10
表 16: 2変数の論理回路その11
<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

図 21: 2変数の論理回路その11

表 17: 2変数の論理回路その12
<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

図 22: 2変数の論理回路その12

表 18: 2変数の論理回路その13
<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

図 23: 2変数の論理回路その13
表 19: 2 变数の論理回路その 14

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

図 24: 2 变数の論理回路その 14

表 20: 2 变数の論理回路その 15

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

図 25: 2 变数の論理回路その 15

表 21: 2 变数の論理回路その 16

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

図 26: 2 变数の論理回路その 16
3.3 NAND ゲート以外のゲート回路のうち、ただ 1 種類で、
NOT, AND, OR, NAND, NOR, XOR ゲートを表せるゲー
ト回路の具体例を示せ。

上記から NAND ゲートによって全ての回路が設計できたのが分かる。NAND
以外で全てのゲートを表せるということは一つの回路だけで NAND を設計
できればいいと言うことが分かる。下の図は NOR で NAND を表したもので
ある。

図 27: NAND ゲート

これにより全てのゲートが設計可能納のがわかる。以下に残りの設計した
回路図を載せる。

図 28: NOT ゲート
図 29: OR ゲート

図 30: AND ゲート
図 31: XOR ゲート

3.4 2 種類のゲート回路で NOT, AND, OR, NAND, NOR, XOR
ゲートを表せるゲート回路の組の具体例を 2 組以上示せ。

これら全ての回路を表すには上に述べた NAND, NOR が使えば良いの
で NOT と各種、さらに NAND, NOR は NOT とも表せるので

12
AND、NAND、OR、NOR

などが考えられる。また、NAND と NOR、NOR と NOT などの他の組み合わせも考えられるがここでは省いている。

3.5 半加算器および全加算器とはどのような回路か調査し説明せよ。

半加算器とは 1 ビットと 1 ビットの加算を行う回路、つまりは 1 枚の 2 近数の加算を行う回路であり、Half Adder (HA) とも言われる。入力は 2 つ、出力はビット出力 (Sum) と桁上がり (Carry) の 2 つである。真理値表は下の表のようになる。

全加算器とは半加算器と同じように 1 ビットと 1 ビットの加算を行う回路であり、Full Adder (FA) とも言われる。反加算器と異なるところは入力に下の桁から桁上がり (Carry) が入ったことである。FA を繋げることにより数桁によるビットの加算が可能となる。真理値表は下の表のようになる。

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>入力</th>
<th>出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_i</td>
<td>A</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
3.6 本実験の考察

今回の実験も前学期におけるハードウェアあるいは現在習っているディジタル回路でも教えてもらった内容であった。

今回、主に学んだことは次の三つであった。

- 汎用ロジック IC の種類とその使用方法。
- 汎用ロジック IC での回路の作り方。
- 基本ゲートの種類やゲートの変換方法。

汎用ロジック IC 使用に関する注意点を加えておく。今回の IC(4011B の規格の NAND ゲート) には 4 つの NAND ゲートが組み込まれているが、回路を製作する際、使わない回路であってもその入力の端子はグラウンド、あるいは電源につなげる必要がある。これを怠ると熱を持ったりするので。

ゲートの変換ができると与えられたゲートをさらに簡単化できたりと非常に便利である。

前回のレポートでは器具になれるためと書いたが一通り、実験指導書をみると大体が一度は習ったことに関してだった。このことから実験は実際に回路を実現してみたりすることでその仕組みをより分かるようになるものなのだろうと感じた。

4 その他

今回の実験は実験自体はそんなに難しくは無かったし、初めて自分でゲートというものを作成できて楽しかったけど、レポートが大変でした。特に tgif を使っての図の作成とそれを TeX に貼付けるのにかなりの時間がかかった。

そのせいか枚数は多いけど文章はそこまで多くはいらないです。もう少し、早く取り組むべきでした …。でも、期限内に終わらせることができてよかったと思います。

前回のレポートでも思っていたのですけど、本実験に関する考察というのがいまいちピンときません。実験でわかったことは大体報告と一緒に書いてしまっているので …。一応、今回はまとめのような感じで仕上げましたがこれでいいのでしょうか？
参考文献

[1] 吉田たけお、尾知博："VHDL で学ぶディジタル回路設計" , CQ 出版社.

