
Synthesis of controllers from Interval Temporal Logic specification

Masahiro Fujita� and Shinji Konoy

We present a method which accepts Interval

Temporal Logic (ITL) formulas as specification

and automatically generates state machines. The

specification in ITL can also be used as a con-

straint for a state machine which is an abstraction

for an existing sequential circuit, which can be

useful for redesign or engineering change. The

generated state machines can be further pro-

cessed by logic synthesizer, such as SIS. We

present experimental results and show the use-

fulnessof our method. Keyword: temporal logic,

logic synthesis

1 Introduction

Temporal Logic is an extension of traditional logic

with temporal operators, which specify allowed values

of variables in multiple time frames. There have been

many research activities on verification based on temporal

logic, [1, 5]). Interval Temporal Logic (ITL in short) is

proposed and used to describe digital circuits. ITL is based

on the idea of intervals which are collections of states.

Temporal operators in ITL can specify allowed sequences

of intervals and also allowed values of variables among

the states within an interval. So, we can easily specify

both serial and concurrent properties in terms of intervals

in ITL.

In this paper, we present a tableau expansion method

[3, 2], with BDD technology. Our method is more efficient

than automaton method [1] and practical subset of [5]. The

presented method can also be used to add a constraint to

an existing design. Similar situations can happen in high-

level synthesis where the detailed scheduling is not fixed

and in the synthesis of sequential circuits with don’t care

�FUJITSU LABORATORIES LTD. Processor Lab. 1015 Kamiko-

danaka, Nakahara ku, Kawasaki 211, JAPAN, fujita@flab.fujitsu.co.jp
ySony Computer Science Laboratory, Inc. 3-14-13 Higashi-gotanda,

Shinagawa ku, Tokyo 141, JAPAN, kono@csl.sony.co.jp

sequences. In both cases, designs have non-determinisms

which can be restricted by adding ITL formulas for the

constaints to the designs.

We have implemented the above method using Prolog

on PC notebook. This implementation demonstrates that

ITL formulas much larger than trivial ones can be processed

within a practical time, even if PC notebook is used.

This paper is organized as follows. In section 2, we

introduce ITL and show how to specify serial and con-

current behaviors in ITL. In section 3, we present the

expansion method which generates state machines from

ITL formulas. In section 4, we present a redesign method

for sequential circuits using ITL. Section 5 gives some

experimental results and section 6 is a concluding remark.

2 Interval Temporal Logic

ITL uses a sequencing modal operator as its basis. In

this logic, it is very easy to express control structures

in conventional programming languages. Here we show

informal visual representation of basic operators in ITL.

An interval can be viewed as a finite line which has number

of clock ticks. An operator empty is true on the length 0

interval, and length specifies the length of that interval.

emptylength(4) length(2)

A local (or atomic) variable p means p occurs at the

beginning of the interval.

p

p

The next operator @P means P becomes true after one

clock cycle (or in the next state). Thus, in ITL, @P ’s

interval must be one clock cycle longer than P ’s and @P

is false on the empty interval.

1

@P

P

We introduce the chop operator ‘&’ which combines two

intervals. P&Q roughly means ‘‘do P then Q’’.

P&Q

P Q

Using the chop operator we can express sometime 3 and

always2.

<> P

= true & P P

[]P

= ~(true & ~P)

P P P P P P

A projection operator creates coarse grain time using a

repeated interval. P proj Q means Q is true on a coarse

grain time interval. In this interval clock ticks are defined

by the repetition of P .

Q

P P P P P P

P proj Q

We shall use the following abbreviations. Here T; F means

true and false.

P � @P _ empty

length(n) � @@:::@
| {z }

n

empty

less(n) �

:::

| {z }

n

F

The chop standard form is a formula which all these

abbreviationshave been removed. Chop standard form may

include variables and conjunction, disjunction, negation,

chop, projection and existential quantifier operations.

In ITL, it is easy to express sequential execution and

time out. We can describe a little complex property like:

((less(5) ^3p ^3q) _ (length(6)&s))&2r

This means that p and q have to be done in 5 clock cycles,

and after that r stays true until the end of the interval. If

p and q do not happen within 5 clock cycles, s is happen

before r.

Usingproj , the time sharing task are easily described. A

preemptable task p which takes 10 ticks can be represented

as follows

proj(T,
([]p,length(4)) P1 P2 P3 P4

T T T T

p p p p p

3 Deterministic Tableau Expansion

In ITL, a temporal logic formula P can be separated

into two parts: the current clock period and the future clock

period. This separation can be represented by a disjunctive

normal form with the empty and the @ (strong next)

operators.

` P , (empty ^ P

e

) _
_

i

P

i

^@Px

i

A formula P is true on an empty interval if P
e

is true. In the

case of a non-empty interval, the required condition Px
i

at

the next clock period depends on the current state condition

P

i

. P

e

and P

i

must not contain temporal logic operator.

We call this separated form the @� normalform. Each

P and Px

i

represents a possible world, and which are

connected by a possible clock transition. To make all

possible world, this transformation has to be applied to the

generated formula Px
i

repeatedly.

This separation is performed recursively on temporal

logic operators in the formula. However, in @-normal

form (which is a kind of disjunctive normal form) negation

becomes expensive. If P contains n disjunction then

n-times normalization is necessary to achieve @-normal

form.

If the conditions P
e

; P

i

do not overlap each other (i.e. if

the transition conditions P
e

; P

i

are deterministic) negation

becomes very easy. if P
e

; P

i

do not overlap each other,

` :P , (empty ^ :P

e

) _
_

i

P

i

^@:Px
i

:

Our tableau expansion rules are designed to maintain this

determinism. If binary subterm diagrams contain finite

numbered nodes, a set of the binary subterm trees must

be finite. However, we can ensure that expansion of a

2

given ITL formula only generate finite subterms. When

we expand all binary subterm diagrams, the expansion

completes.

3.1 Binary Subterm Diagram

During possible world generation, various kind of ITL

formulas are generated. Unlike LTTL or ETL, generated

formulas contain more complex terms than the original

subterm. It is not easy to see the finiteness of generated

formulas.

To overcome this situation, we introduce a binary sub-

term diagram. This contains typed nodes: triples ?(P;Q;R)

is a binary decision node, in which if variable P is T then

Q else R and numbered nodes for a binary temporal

logic operator O(P;Q). (ex. &; proj). Translation

from ITL formula to binary subterm diagram is done in

a bottom-up way. For example, 32p is expanded into

a chop standard form: T&:(T&:p). First :p is trans-

lated into, ?(p; F; T). Then we need a numbered node

s1 for the chop operator, such that, s1 = T&?(p; F; T).

Then the original formula is transformed into a numbered

node, such that, s2 = T&?(s1; F; T). After tableau ex-

pansion of this formula, we have a complex formula,

(:(T&:p)) _ (T&:(T&:p)). But the result of the trans-

formation is simple (Fig. 1), s3 =?(s2; T; ?(s1; F; T)).

T

= s3

s2

T

F

F

F

s1
Q

Q

Q

Q

Qs

�

�

��

�

�

�

��

B

B

B

B

B

B

B

BN

T

��

��

��

��

:((T&:p)
| {z }

s1

) _ T&:(T&:p
| {z }

s1

)

| {z }

s2
| {z }

s3

Figure 1: Binary Subterm Tree

In this way, we regard each subterm as an Binary

Decision Diagram. This results in a canonical form for

sub-formulas generated by tableau rules from a given

temporal logic formula. So, we can easily check whether

the newly generated sub-formulas are those that have been

already processed or not.

Sequential circuits

Deterministic
state machines

Abstracted
state machines

Deterministic
state machines

1. State machine extraction
 (e.g. stg_extract)

2. Eliminate
 conditions

New constraints
in ITL 3.

Sequential circuits

5. Logic synthesis

4. Sythesizer

(tableau and determinize)

KISS2 interface

Figure 2: Flow of Our Redesign Method

4 A Redesign Method

We cannot handle very complex ITL formulas within a

reasonable time, since the expansion time grows exponen-

tially with the number of temporal operators in the worst

case. So, more practical situation is to use ITL formulas as

a partial specification for the system being designed.

This redesign method for sequential circuits are shown

in Figure 2. The (possibly non-deterministic) state ma-

chines can be obtained from existing sequential circuits.

First we extract state machines from given sequential cir-

cuits by the procedure such as stg extract in SIS (1. in

Figure 2). Then the conditions for variables which must

be modified are eliminated from the generated state ma-

chines. This process generates possibly non-deterministic

state machines in the sense that the eliminated constraints

for variables are not sensed and controlled (2. in Figure

2). Then we provide ITL formulas for the specification of

the eliminated variables so that they satisfy the required

properties. (3. in Figure 2). By using deterministic tableau

methods on the ITL formulas and the existing sequential

circuits, the resulting state machine is the one we wanted,

i.e., the one which satisfies both the properties in the ex-

tracted state machine and the ones in ITL formulas (4. in

Figure 2). The final state machine can be logic synthesized

and the desired sequential circuit is obtained (5. in Figure

2).

If we want a sequential circuit which satisfy the new

3

S0 S1

S2S3

ab / q

c / q

c / q

ab / q
a+b / q

a+b / q

c / q

c / q

S0 S1

S2S3

ab / q

c / -

c / -

ab / -
a+b / q

a+b / -

c / -

c / -

Figure 3: Modified design: some conditions for output

q are eliminated

constraints but whose structure are similar to the existing

circuit, we can use the method presented in [4]. By using

these method, we can obtain a final circuit which has a

very similar structure, e.g., a circuit having most part of the

original circuit, or a circuit having only small extra circuit.

5 Implementation and some results

The current implementation has been written in Prolog

(s.t. C-Prolog or SICStus Prolog) and is very short (730

lines). The synthesized state machine for (length(2) ^

@3p) proj T is shown in Figure 4. The CPU time for

this expansion only takes 1.3 seconds on PC notebook with

16MHz 386 chip. As you can see from the figure, some

transition has no conditions. This can be considered that

the generated machines only satisfy partial requirements.

By making the product between this and a state machine

which is an abstraction of an existing design, we can get

the final design. For example, suppose we have an existing

design as shown in Figure 3. In this circuit the ouptut is

q. Now suppose we want to modify the output value of

q as follows: when transitioning from state S0 to S1 and

from S2 to S3, the output value q must be 0. Otherwise,

the output q must be one every 2 clock cycles. In this

case, first we modify the existing design as in Figure 3.

Here only the necessary 0 value for q is specified. If

necessary, quantifiers or temporal operator can be used.

Then we compute the product of the machines shown in

Figure 3 and get the final state machine which satisfies

the requirement for q. Resulting state machine contains 12

states and 36 transitions. From the state machine we can

synthesize the final circuit using the rectification methods

shown in [4]. We have tested our method on fsmexamples

of SIS-1.1 from the mcnc91 distribution in KISS2 format.

1 2 3

4

q
q

q

true true

Figure 4: Synthesized state machine

6 Conclusions

We have presented a synthesis method which generate

sequential circuits from ITL formulas. We have also

shown a redesign method for sequential circuit which has,

we believe, practical values in real designs. Although our

method requires exponential computation in terms of the

number of variables and the depth of the temporal logic

operators, its computation is linear to the number of the

generated states due to binary subterm diagrams. Hence it

works well for the complex formulas if it does not include

many variables and temporal operators, which are common

cases when we apply our method to redesign.

Our program can work and process practical examples

on PC notebook. So, if we install logic synthesizer, such

as SIS, on PC notebook, we can easily do redesign for

sequential circuits out of office.

References

[1] Gjalt G. de Jong. An Automata Theroretic Approach

to Temporal Logic. In Computer Aided Verification.

Springer-Verlag, July 1991. 3rd International Work-

shop, CAV’91.

[2] Masahiro Fujita and Shinji Kono. Synthesis of Contr-

llers from Interval Temporal Loigc Specification. In-

ternational Workshop on Logic Synthesis, May 23-26,

1993.

[3] S. Kono. ‘‘automatic verification of interval temporal

logic’’. In Proc. 8th British Colloquium for theoretical

computer science, Mar. 1992.

[4] Y. Kukimoto and M. Fujita. ‘‘rectification method

for lookup-table type fpga’s’’. In Proc. of ICCAD-92,

pp. 54--61, Nov. 1992.

[5] Roni Rosner and Amir Pnueli. A choppy logic, 1986.

4

