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We have developped Tokio interpreter[5] for first order Inteval Temporal Logic[11] and an au-
tomatic theorem prover [6, 7] for Propositional Interval Temporal Logic. The verifier features
deterministic tableau expansion and binary decision tree representation of subterms. Combining
these, we can avoid repeated similar clausal form time constraints, and it is possible to execute
wider range of specification without time-backtracking.

1 Interval Temporal Logic

Interval Temporal Logic[11] (hereafter referred as ITL) uses a sequencing modal operator as its
basis. In this logic, it is very easy to express control structures in conventional programming
languages, (such as ‘;’, while statement). From this point of view a process algebra such as CCS[9]
or CIRCAL[8] is also good for control structures, but it does not support negation and declarative
expressions (like sometime or always) which are common to Temporal Logic.

In this paper, we show an implementation of interval temporal logic theorem prover. This
method is a tableau driven method[12, 14] and a practical implementation of [5, 7]. It also generates
a deterministic state diagram as a verification result.

We have developped first order Interval Temporal Logic interpreter using a kind of clausal form.
It is easy to combine the result of verification and the interpreter, since the generated state diagram
can be easily translated into clausal form.

First we show informal visual representation of basic operators in ITL. An interval is a finite
line which has number of clock ticks. An operator empty is true on the length 0 interval.

emptylength(4) length(2)

A local variable p means p occurs at the beginning of the interval.

p

p

The nextoperator @P means P becomes true after one clock cycle. Thus, in ITL @P ’s interval
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must be one clock cycle longer than P ’s and @P is false on the empty interval. We call this
strongnext. We write weaknext ©P as @P ∨ empty. P can be any temporal logic formula.

@P

P

We introduce the chop operator ‘&’ which combines two intervals. P&Q roughly means “do P

then Q”.

P&Q

P Q

Using the chop operator we can express sometime 3 and always 2.

<> P

= true & P P

[]P

= ~(true & ~P)

P P P P P P

A projection operator creates coarse grain time using a repeated interval. P proj Q means Q is
true on a coarse grain time interval. In this interval clock ticks are defined by the repetition of P .

Q

P P P P P P

P proj Q

We shall use the following abbreviations,

P ∨ Q ≡ (¬P ) ⇒ Q

P ∧ Q ≡ ¬(P ⇒ ¬Q)

P ⇔ Q ≡ (P ⇒ Q) ∧ (Q ⇒ P )

more ≡ ¬empty

+P ≡ P&(P ∨ empty)&...&(P ∨ empty)

3P ≡ T&P

2P ≡ ¬3¬P

©P ≡ @P ∨ empty

skip ≡ @empty

length(n) ≡ @@...@
︸ ︷︷ ︸

n

empty

less(n) ≡ ©©...©
︸ ︷︷ ︸

n

F
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∀P f(P ) ≡ ¬∃P¬f(P )

P&&Q ≡ (P ∧ ¬empty)&Q

∗ P ≡ (P proj T ) ∨ (empty ∧ P ) (closure)

fin(P ) ≡ empty ⇒ P

halt(P ) ≡ empty ⇔ P

+P is a closure of chop. The chop standard form is a formula which all these abbreviations have
been removed. Chop standard form may include variables and conjunction, disjunction, negation,
chop, projection and existential quantifier operations.

For example, we can make a simple theorem, 3empty, since we use finite interval (every interval
must include an termination point). Hence, its dual 2more is unsatisfiable since we cannot extend
the interval indefinitely. Later we prove that

(23P ) ⇔ (32P ) ⇔ fin(P ),

from which we deduce ITL cannot express fairness. As indicated in [13], the decision procedure is
simple for finite intervals.

1.1 Specification in Interval Temporal Logic

In ITL, it is easy to express sequential execution and time out.

((less(5) ∧ 3p ∧ 3q) ∨ (length(6)&s))&2r

This means that p and q have to be done in 5 clock cycles, and after that r stays true until the end
of the interval. Otherwise s is happen before r.

Using proj , the repeated event and time sharing task are easily described as in [3]. The expression

(length(2) ∧ 3p)proj T

represents a process in which p happens every 2 clock cycles (its timing is not specified).

T

@<>q @<>q @<>q @<>q
proj((@<>q,length(2)),
T)

Conversely some preemptable task p which takes 10 ticks can be represented as follows

T proj(length(4) ∧ 2p)

proj(T,
([]p,length(4)) P1 P2 P3 P4

T T T T

p p p p p

Of course, we can add a time limit easily. For example, if task p has to be done before q will
happen:

((T proj (length(4) ∧ 2p)) ∧ keep(¬q))&q.
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((length(3) proj @<>a),T) ((length(5) proj @<>c),T)

(T proj (length(5),[](b))),
length(15) & T

[](not((a,b)),
[](not((b,c)),
[](not((c,a))

Resource

Figure 1: Real-time Task Combination

For a more complex example, if we have 2 periodical tasks (intervals are 3 clocks and 5 clocks)
and one time sharing task with dead line with length(15), which shares one resource. (Fig.1).

((T proj (length(5) ∧ 2(c))) ∧ length(15))&T )∧
(((length(3)proj @3(a)) ∧ T )&less(3))∧
(((length(5)proj @3(b)) ∧ T )&less(5))∧
2(¬((a ∧ b)))∧
2(¬((b ∧ c)))∧
2(¬((c ∧ a)))

2 Verification Methods

To verify a temporal logic, several methods are known such as the Tableau Method [14], Finite
Automaton Generation [2] and Model Checking[10, 4].

Local ITL is also known to be decidable [11] using conversion to Quantified Linear Time Temporal
Logic. However, this conversion generates one extra variable for each & operator which makes
verification space/time hard. It also introduces infinite the interval and fairness unnecessarily.
Hereafter we restrict ourselves in Local ITL. There is a model checker for Branching Temporal
Logic / Computation Tree Logic [10] which has polynomial order complexity. However this is not
a complete verifier.

3 Deterministic Tableau Expansion

In ITL, a temporal logic formula P can be separated into two parts: the current clock period and
the future clock period. This separation can be represented by a disjunctive normal form with the
empty and the @ ( strong next) operators.

⊢ P ⇔ (empty ∧ Pe) ∨
∨

i

Pi ∧ @Pxi

A formula P is true on an empty interval if Pe is true. In the case of a non-empty interval, the
required condition Pxi at the next clock period depends on the current state condition Pi. Pe and
Pi must not contain temporal logic operator. We call this separated form the @ − normalform.
Each P and Pxi represents a possible world, and which are connected by a possible clock transition.
To make all possible world, this transformation has to be applied to the generated formula Pxi

repeatedly. Termination of this procedure will be discussed in later section.
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For exapmle, @ − normalform for p&q&r is

⊢ p&q&r ⇔ (empty ∧ r ∧ q ∧ p)
∨ (r ∧ q ∧ p ∧ @T )
∨ (¬(r) ∧ q ∧ p ∧ @(T&r ∨ T&q&r))
∨ (¬(q) ∧ p ∧ @(T&q&r)).

This @ − normalform represents a non-deterministic state transition shown in Fig.2.

&%
'$

&%
'$

&%
'$

&%
'$
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-
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p&q&r

T&r ∨ T&q&r

T&q&r

T

¬(r) ∧ q ∧ p

¬(q) ∧ p

r ∧ q ∧ p

6
&%
'$

F

¬p

Figure 2: State Transiton for Chop Operator

This separation is performed recursively on temporal logic operators in the formula. For example,
if we have two @-normal forms for P and Q then,

P = (empty ∧ Pe) ∨
∨

i

Pi ∧ @Pxi

Q = (empty ∧ Qe) ∨
∨

i

Qi ∧ @Qxi

The @-normal form for P&Q will be,

P&Q = (empty ∧ Pe&Q) ∨
∨

i

Pi ∧ @Pxi&Q.

The expansion is easy because we use non-deterministic state transition, but there is a problem.
Since we use @-normal form (which is a kind of disjunctive normal form) negation becomes ex-
pensive. If P contains n disjunction then n-times normalization is necessary to achieve @-normal
form. This corresponds the fact that this transformation generates non-deterministic transition.

However, if the conditions Pe, Pi do not overlap each other (i.e. if the transition conditions Pe, Pi

are deterministic) negation becomes very easy,

⊢ ¬P ⇔ (empty ∧ ¬Pe) ∨
∨

i

Pi ∧ @¬Pxi. (if Pe, Pi do not overlap each other)
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We call @-normal form deterministic if the conditions Pe and Pi do not overlap. Fortunately, it is
possible to keep deterministic @-normal form in every tableau expansion of an ITL operator.

Since Pi and Pe contain no temporal logic formulae then non-overlapped conditions can be
represented as a binary decision tree, in which leaves are ITL formulae. If the condition contains
n variables then each node has a maximum of 2n leaves. We do not need to simplify Pi, Pe part,
since the expansion is unique. In fact, for a binary decision tree, Pi, Pe is represented by a path
in the tree (i.e a set of variables and empty or its negation). If we need two variables a, b for Pe,
the possible paths are: [empty, +a, +b], [empty, +a,−b], [empty,−a, +b], [empty,−a,−b]. Then We
write @-form for P like this:

P : [empty, +a, +b] → Pe0

[empty, +a,−b] → Pe1

[empty,−a, +b] → Pe2

[empty,−a,−b] → Pe3

[more, +a, +b] → Px0

[more, +a,−b] → Px1

[more,−a, +b] → Px2

[more,−a,−b] → Px3

→ means a state transition here. Pei are T or F because it contains no temporal logic operator
or variables. Pxi are temporal logic formulae, which label possible worlds as states. In this way,
the tableau expansion can generate a deterministic automaton. To check the finiteness of the
automaton, another normal form technique is necessary for the leaves (which will be discussed in
the later section).

For fixed Pi, Pe, the deterministic tableau expansion rules can be described as a boolean operation
on the leaves. Here we assume P ’s leaf for an Pi condition is more(P ) and P ’s leaf for a Pe condition
is empty(P ). If we meet a local variable p, a node is added to the binary decision tree, that is, Pi is
changed into two leaves Pi ∧ p and Pi ∧¬p. Since empty(P ) contains no ITL operator, no variable
and no connectives, empty(P ) is T or F .

T

empty(T ) = T

more(T ) = @T

P ∧ Q

empty(P ∧ Q) = empty(P ) ∧ empty(Q)
more(P ∧ Q) = more(P ) ∧ more(Q)

P ∨ Q

empty(P ∨ Q) = empty(P ) ∨ empty(Q)
more(P ∨ Q) = more(P ) ∨ more(Q)

¬P

empty(¬P ) = ¬empty(P )
more(¬P ) = ¬more(P )

@P

empty(@P ) = F

more(@P ) = @P

P&Q

empty(P&Q) = empty(P ) ∧ empty(Q)
more(P&Q) = (empty(P ) ∧ more(Q)) ∨ (more(P )&Q)
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∃yQ y is removed from leaf conditions
empty(∃yQ) = (empty(y ∧ Q) ∨ empty(¬y ∧ Q))
more(∃yQ) = ∃y((more(y ∧ Q) ∨ more(¬y ∧ Q)))

∗(P )
empty(∗(P )) = empty(P )
more(∗(P )) = more(P )& ∗ (P )

P proj Q

empty(P projQ) = empty(Q)
more(P projQ) = more(P )&(P projmore(Q))

These transformation rules are part of the complete axiom system in ITL. To see the soundness
of these transformations, we have to look at the model definition of the temporal logic operator.

For the chop rule, we have

Mij(P&Q) = T when i ≤ ∃k ≤ j,

Mik(P ) = T, Mkj(Q) = T

F otherwise.

First we note that Mij((P ∨ Q)&R) = T if Mij(P&R) = T or Mij(Q&R) = T . Since leaves in a
binary tree are all connected by disjunctions, a proof on a leaf is sufficient.

In the case of empty, i = j in Mij(P&Q) = T , then i can be used as a k, and Mii(P ) = T

and Mii(Q) = T . This is equivalent to the Mii(P ) ∧ Mii(Q). That is empty(P&Q) = empty(P ) ∧
empty(Q). If j > i then k = i or k > i. In case of k = i, Mik(P ) = T and Mkj(Q) = T are
necessary, so that empty(P ) = T and more(Q). Otherwise k > i, requires more(P )&Q. QED.

Since all the mapping function has distribution rule for disjunciton, other rules can be proved in
the same way. This is because ITL’s chop operator has the same property as existential quantifier.

3.1 Expansion Example

The tableau expansion of p&q generates a tree with 6 leaves. For the empty condition we can
replace & with ∧. Then we have

empty ∧ (p&q) : [empty, +q, +p] → T

[empty,−q, +p] → F

[empty,−p] → F.

For the non-empty condition,

more ∧ (p&q) : [more, +q, +p] → T

[more,−q, +p] → (T&q)
[more,−p] → F.

The first line comes from empty(P ∧Q) ∨ (more(P )&Q) and empty(P ∧ Q) = T . The second line
comes from empty(P ∧ Q) = F and more(P ) = T .

3.2 Binary Subterm Tree

During possible world generation, various kind of ITL formulae are generated. Unlike LTTL or
ETL [14], generated formulae contain more complex terms than the original subterm. It is not easy
to see the finiteness of generated formulae.

To overcome this situation, we introduce a binary subterm tree. This subterm tree contains
typed nodes:
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• A triple ?(P, Q, R) is a binary decision node, in which if variable P is T then Q else R.

• ∃xQ, where x is a free variable.

• a numbered node for a unary temporal logic operator O(P ). (ex. @, ∗)

• a numbered node for a binary temporal logic operator O(P, Q). (ex. &, proj)

Translation from ITL formula to binary subterm tree is done bottom-up. For example, 32p is
expanded into a chop standard form: T&¬(T&¬p). First ¬p is translated into,

?(p, F, T ).

Then we need a numbered node s1 for the chop operator, such that,

s1 = T&?(p, F, T ).

Then the original formula is transformed into a numbered node, such that,

s2 = T&?(s1, F, T ).

After tableau expansion of this formula, we have a complex formula, (¬(T&¬p)) ∨ (T&¬(T&¬p)).
But the result of the transformation is simple (Fig. 3),

s3 =?(s2, T, ?(s1, F, T )).

T

B
B
B
B
B
B
BBN

�
�

���

�
�

��

Q
Q

Q
QQs

S1

F

F

F

T

S2

= S3

T

¬((T&not(p))
︸ ︷︷ ︸

s1

) ∨ T&¬(T&¬(p)
︸ ︷︷ ︸

s1

)

︸ ︷︷ ︸

s2

︸ ︷︷ ︸

s3

Figure 3: Binary Subterm Tree

In this way, we can store generated formulae compactly in a binary subterm tree. As with the
binary decision diagram, if we fix the ordering of nodes from top to bottom, the form of a node
becomes unique to the logical connectives such as negation, conjunction or disjunction.

3.3 Termination of tableau expansion

If binary subterm trees contain finite numbered nodes, a set of the binary subterm trees must
be finite, During the tableau expansion, we generates a formula which contains temporal logic
operators. If this generated formula contains a new form of binary subterm tree in the argument
of the operator then it may require a new node.

The expansion rules for logical connectives and the operator do not increase numbered nodes.
Other rules generate only a fixed amount of temporal logic operators. Although we do allow
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recursion, we ensure that the depth of the temporal logic operator is monotonically decreased in
an argument. For example, in projection the former part decrease the depth monotonically but the
latter part increases by a single & operator. Subsequently there are no infinitely applied rules, and
only a finite number of new temporal logic operators are generated.

Here we prove this for the proj operator. Others can be proved in the same way.
Suppose more(P ), more(Q) generate finite variant. In the tableau expansion of proj ,

more(P projQ) = more(P )&(P projmore(Q)),

it generates a new node for the chop operator and the projection operator. The former part of the
chop more(P ) can vary according to the variant. The latter part of the chop can vary according to
the variant of more(Q). So the number of generated formulae is less than the number of products
of variants for more(P ) and more(Q). QED.

Since the tableau expansion generates a finite number of binary subterm tree nodes, it gener-
ates only a finite binary subterm tree. When we expand all binary subterm trees, the expansion
completes.

3.4 Verification Example

First try to prove fin(p) ⇔ 2(3 p). The chop normal form is rather complex:

(¬(T&(empty ∧ p)) ∨ ¬(T&¬(T&p))) ∧ (T&(empty ∧ p) ∨ T&¬(T&p))

We number this state as S1. It looks complex but it has a simple binary subterm tree form. It has
only three &, so we have three binary subterm nodes:

s1 : T&?(p, ?(empty, T, F ), F )) = T&(empty ∧ p)
s2 : T&?(p, T, F )) = T&p

s3 : T&?(s2, F, T )) = T&¬(T&p).

The original formula has binary subterm tree: ?(s3, ?(s1, F, T ), ?(s1, T, F )).
It is translated into @-normal form.

S1 : [empty, +p] → T

[empty,−p] → T

[more, +p] → S1

[more,−p] → S2

S2 is a newly generated state,

(¬(T&(empty ∧ p)) ∨ ¬((¬(T&p) ∨ T&¬(T&p)))) ∧ (T&(empty ∧ p) ∨ ¬(T&p) ∨ T&¬(T&p)).

Its subterm tree form is ?(s3, ?(s1, F, T ), ?(s2, ?(s1, T, F ), ?(s1, F, T ))), and it is expanded into:

S2 : [empty, +p] → T

[empty,−p] → T

[more, +p] → S1

[more,−p] → S2

This is exactly the same as S1’s transition function. There are no newly generated formula in this
case, so we can finish the tableau expansion procedure. It is easy to check every empty leaf has T ,
so the original formula is valid.
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4 Generated Model and Counter Example Generation

After tableau expansion, we have a deterministic finite automaton. Each state in an automaton
is labelled by a unique binary subterm tree. The transition condition of the automaton is a list
of +variable and -variable. The initial state is labelled by the original formula, and the empty
transition (i.e. transition in which condition contains the empty operator ) generates T or F .

This automaton returns T or F for finite series of events represented by local interval temporal
logic variables. That is, it characterize the original temporal logic formula. Since we are handling
finite sequences, the termination condition of an automaton is a part of the assumption.

The output automaton state indicates which subterm is true or false; it can be used as a speci-
fication tester in hardware implementation.

If for all transitions which contain empty results T then it must accept all possible sequences of
truth value assignments for the variables. That is, the original formula is valid. If there are no T

nodes in the empty transition then the original formula is unsatisfiable.
Once we have an F node in the empty transition, it is easy to generate a counter example. The

problem is how to discover a path from the initial state to the F node. The shortest path is easily
found, if we reverse all links and mark the states in the automaton with a number in generated
order.

First we check the least numbered F node, then pick up the least numbered node from the reverse
links from the F node. We repeat tracing the least numbered node in the reverse links. Eventually
we will reach the initial node which has the least numbered node in the root of reverse links.
The generated shortest path should be acyclic. The traced path represent the shortest counter
execution. If we start from a T node, we will have the shortest sample execution. Unfortunately,
the shortest examples need not necessarily be useful.

4.1 Execution Examples

Consider next formula:

(p&&p&&p&&p&&p&&¬p&&p) → 2(3p).

Using our verification program, it generates 13 states, 13 subterms, 42 state transition. It takes
13.7 sec on T2200SX, 386sx IBMPC compatible Laptop. There is a counter example because p

— ?- diag.
counter example:
0:+p 2
1:+p 3
2:+p 5
3:+p 7
4:+p 9
5:-p 11
6:+p 12
7:-p F

Figure 4: Example of Counter Example Generation

is a local variable and there are no constraints on the end of an interval on the assumption in the
formula. It is possible to make p false at the end of an interval which violates 23p, that is fin(p).
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The next one is more complex.

(((T proj (length(5) ∧ 2(dc))) ∧ length(15))&T )∧
((length(3)proj @3(ac)) ∧ T )∧
((length(5)proj @3(bc)) ∧ T )∧
((length(5)proj @3(cc)) ∧ T )∧
2(((ac ∧ ¬(bc) ∧ ¬(cc) ∧ ¬(dc))∨
(¬(ac) ∧ bc ∧ ¬(cc) ∧ ¬(dc))∨
(¬(ac) ∧ ¬(bc) ∧ cc ∧ ¬(dc))∨
(¬(ac) ∧ ¬(bc) ∧ ¬(cc) ∧ dc)∨
(¬(ac) ∧ ¬(bc) ∧ ¬(cc) ∧ ¬(dc))))

The first line is a time sharing task which has a deadline length(15) and requires 5 clock cycles to
be done. Between the second and the fourth lines are 3 periodical tasks. The reminder consists of
shared resource conditions, that is, ac, bc, cc and dc cannot happen together. If it has no possible
execution, these real-time tasks are not schedulable.

Using the verifier, it generates 242 states, 115 subterms and 799 state transition. It takes 336.591
sec on 386sx 20Mhz, and it finds there are no possible executions. If we change the load on time
sharing task from 5 clock cycle to 4 clock cycle it finds a possible execution. This time it requires
392.28 sec and it generates 303 states, 107 subterms and 982 state transition. A generated possible
execution is shown in Fig. 5.

execution:
0:-ac-bc-cc+dc 2
1:-ac-bc-cc+dc 3
2:-ac-bc-cc+dc 8
3:+ac-bc-cc-dc 13
4:-ac+bc-cc-dc 16
5:-ac-bc+cc-dc 19
6:+ac-bc-cc-dc 20
7:-ac-bc-cc+dc 21
8:+ac-bc-cc-dc 27
9:-ac+bc-cc-dc 31
10:-ac-bc+cc-dc 33
11:+ac-bc-cc-dc 35
12:-ac+bc-cc-dc 50
13:+ac-bc-cc-dc 52
14:-ac-bc+cc-dc 54
15:-ac-bc-cc+dc 0

Figure 5: A Possible Execution

The implementation includes X window Interface as shown in Fig. 6.

5 Combination of Clasusal Form Program and Constraints

First order logic version of Interval Temporal Logic interpreter is called Tokio. The relationship
between Tokio and first order ITL is just like the one between Prolog and first order predicate logic.
If we do not use temporal operators, the execution of Tokio is just the same as that of Prolog.
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Figure 6: X window display
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The syntax of Dec-10 Prolog is chosen here [1].

ap([], X, X). (1)

ap([H|X], Y, [H|Z]) : − ap(X, Y, Z). (2)

This is a Prolog append program. [X|Y] means a cons pair and [] means nil. A form ap(...) is
called a predicate. Variables in Tokio are words beginning with capital letters or .

A Tokio program: p1, p2, ..., pn is true in the interval int is described as:

int : −p1, p2, ..., pn.

That is, the interval name is used as a predicate name, and p1, p2, ..., pn are used as bodies. The
Horn clause in Tokio is extended with temporal operators, such as

t1 : −2write(0), length(3)&&2write(1), length(5).

This writes four ‘0’ and six ‘1’ for each clock period.

6 Combination Example

Let’s consider a toy GUI (Graphical User Interface) (Fig. 7). There are two buttons named start

Figure 7: A toy GUI

and stop and one signal. When start button is pushed the signal turns green and the GUI starts
moving a small ball. When stop button is pushed the signal turns red and the ball stops. The
specification is expressed in ITL like this:

+(((stop ∧ keep((red ∧ ¬(start))) ∨ start ∧ keep((green ∧ ¬(stop))))))∧
2((red ∧ ¬(green) ∨ ¬(red) ∧ green))∧
2((green → move))∧
2((red → ¬(move)))halt(quit)

This is translated into state diagram using our verifier. It takes 2.97 sec in 386SX 20Mhz IBMPC
and generates 3 states, 10 subterms, 13/90 state transitions. The specification contains many
variables, so state transitions are large, but actual states are small.

The resulted state transitons are automatically translated into Tokio program. Generation of
clausal form is straight forward. Here we use * for static variable in Tokio interpreter. The events
are classified for input events and output events. Input events are translated into equation and
output events become assignments.
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s1 :- empty,*stop= 1,*quit= 1,*green:= 0,*move:= 0,*red:= 1,empty.

s1 :- empty,*stop= 1,*quit= 1,*green:= 1,*move:= 1,*red:= 0,empty.

s1 :- empty,*stop= 0,*start= 1,*quit= 1,*green:= 0,*move:= 0,*red:= 1,empty.

s1 :- empty,*stop= 0,*start= 1,*quit= 1,*green:= 1,*move:= 1,*red:= 0,empty.

s1 :- more,*stop= 1,*start= 0,*quit= 0,*green:= 0,*move:= 0,*red:= 1,@s2.

s1 :- more,*stop= 0,*start= 1,*quit= 0,*green:= 1,*move:= 1,*red:= 0,@s3.

s2 :- empty,*quit= 1,*green:= 0,*move:= 0,*red:= 1,empty.

s2 :- empty,*quit= 1,*green:= 1,*move:= 1,*red:= 0,empty.

s2 :- more,*stop= 1,*start= 0,*quit= 0,*green:= 0,*move:= 0,*red:= 1,@s2.

s2 :- more,*stop= 0,*start= 0,*quit= 0,*green:= 0,*move:= 0,*red:= 1,@s2.

s2 :- more,*stop= 0,*start= 1,*quit= 0,*green:= 1,*move:= 1,*red:= 0,@s3.

s3 :- empty,*quit= 1,*green:= 0,*move:= 0,*red:= 1,empty.

s3 :- empty,*quit= 1,*green:= 1,*move:= 1,*red:= 0,empty.

s3 :- more,*stop= 0,*start= 1,*quit= 0,*green:= 1,*move:= 1,*red:= 0,@s3.

s3 :- more,*stop= 0,*start= 0,*quit= 0,*green:= 1,*move:= 1,*red:= 0,@s3.

s3 :- more,*stop= 1,*start= 0,*quit= 0,*green:= 0,*move:= 0,*red:= 1,@s2.

We can test the generated implementation for a set of input events using a Tokio program. Next
program generates a start event and a stop event.

test :-

static([green, red, move, stop, start]),

*green:=0, *red:=1, *move:=0, *stop := 1, *start :=0 , *quit := 0

&& ((

length(3), *stop := 0, *start :=1 &&

length(3), *stop := 0, *start :=0 &&

*stop := 1, *start :=0, @(*quit := 1)

),

s1,

[]((G= *green, R= *red, S= *start, P= *stop, M = *move,

write((green,G,start,S,red,R,stop,P,move,M))))).

Here is a possible execution result.

?- tokio test.

t0:

t1:green,0,start,0,red,1,stop,1,move,0

t2:green,0,start,1,red,1,stop,0,move,0

t3:green,1,start,1,red,0,stop,0,move,1

t4:green,1,start,1,red,0,stop,0,move,1

t5:green,1,start,0,red,0,stop,0,move,1

t6:green,1,start,0,red,0,stop,0,move,1

t7:green,1,start,0,red,0,stop,0,move,1

yes

| ?-
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The example looks small but it becomes large quickly if we add more time constraints. But
our verifier is robust for large rules and small number of variables. Since GUI prefer small number
of buttons to control complex control such as double click, it seems that this method fits for
GUI application generator. Especially simple adding of temporal constraints are far easier than
modications of the state diagram, which is buggy part of GUI.

A part of actual GUI code is shown below. This GUI uses InterViews package of SICStus Prolog.

toy :- static([green, red, move, stop, start,quit]),

*move:=1,*quit:=0,*stop:=0,*start:=1,*red:=0,*green:=1,

bounce_init(W,R,G),@toy1(W,R,G).

toy1(W,R,G) :-

[](event), % input

s1, % automaton

[]((button_red(R),button_green(G),bounce(W))). % output

event :- nextevent(E),E=E1,event_select(E1).

event_select(noevent) :- true.

event_select(button(_,start)) :- *start := 1, *stop := 0.

event_select(button(_,stop)) :- *stop := 1, *start := 0.

event_select(button(_,quit)) :- *quit := 1.

button_red(Out) :-

*red =0, Out => out("").

button_red(Out) :-

*red =1, Out => out("Red").

event/0 generates input variables such as *start. s1/0 handles state transition. button_red/1
is an object which handles necessary display procedures. Unlike other GUI package, event handling
is seprated from GUI objects such as button or bounce procedure. Since GUI is inherentry parallel,
a combination of temporal logic and object oriented graphic package seems useful.

7 Future Works

To make things faster, since the subterm vector is used in the BDD implementation, it is possible
to use a set of BDDs rather than a single huge BDD. A modication of existing state diagram is
important, because synthesized state transitions can be very large.
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