2ITL: Logic which has a process as a value of a variable

Shinji Kono
Information Engineering, University of the Ryukyus
E-Mail: kono@ie.u-ryukyu.ac.jp

Abstract: A process is a value of a variable of higher order interval propositional temporal logic (2ITL hereafter). Not only temporal relation-ship among events, but also processes are directly defined in terms of temporal logic. The process includes finite state machine, fairness, a scheduling mechanism, inverse specification, and various temporal logic formula.

1 Second Order Temporal Logic

In normal temporal logic, variables represents events depending on a clock period like other Temporal Logics. But in Interval temporal logic (Ref. [3] ITL hereafter), variables represent series of events in intervals of time. Value of 2nd order variable is an arbitrary formula. We call ITL with 2nd order variables 2ITL.

In case of classical logic, second order propositional logic is trivial, because the value of the 2nd order variable is either T or F. For a formula $f(P)$ with 2nd order variable P and propositional variable p, we can prove

$$\vdash f(p) \iff \vdash f(P).$$

There are no differences between second order logic and normal logic from the viewpoint of validity.

The same situation happens in ITL.

$$\vdash f(P) \iff f(p) \text{ in ITL}$$

If-part is trivial because p is a possible interpretation of P. In the other direction, for an interpretation $M_{\sigma_1...\sigma_n}$ of Kripke structure, truth value of P is fixed, $M_{\sigma_1...\sigma_n}(P)$. $\sigma_1...\sigma_n$ is n length interval. This is a truth value function of $\sigma_1...\sigma_n$. If we use this function for defining truth value of p, $f(p)$ is true from the assumption. So $f(P)$ is true.

This proof works only on full ITL, which is undecidable[3]. A possible restriction of ITL is local ITL. In local ITL, truth value of every variable is determined at the first clock of the interval. Clearly we cannot have the truth value function of $\sigma_1...\sigma_n$ for a local variable. This means 2nd order variable have to be an interval variable, which value changes on each interval.

Since full ITL is undecidable, in this paper, we'll show some restrictions which makes ITL decidable.

2 Specification Examples

A second order variable represents a mechanism to terminate an interval. It is possible to think it a fairness.

$$\Diamond_S P \equiv S & P$$

$\Diamond_S P$ means P is eventually true on fairness S, eventuality-S. Unlike fairness in LTL, many kinds of different fairness can be defined in 2ITL. In fact the value of second order variable is different on each clock period, so it defines different fairness on each clock period. We can think this is an abstraction of watchdog timer or counter. The mechanism of the timer can be defined in terms of ITL;

$$\Box (S = \less(2))$$

$\Box P$ means P is true on all sub-interval. This means S assures an interval which is less than 2 clocks. $\less(n)$ operator can be defined using n-times nested weak next operator: $\less(2) \equiv \Box \Box \Box \text{empty}$. This is a simple watchdog timer mechanism (Fig. 1).

![Figure 1: External Timer](image-url)
Of course, we can use second order variables to define a process by recursion like process algebra.

\[(P \rightarrow ((a \land QP) \lor (b \land \neg a \land \text{empty})))\]

But we have to consider the restrictions of second order variables in these process representations in case of verification.

3 Undecidability from a View Point of Tableau Expansion

In this section, we discuss on a tableau method of 2TTL. In Tableau method on discrete temporal logic, temporal logic terms are decomposed into two parts. One part is depending only on current clock period and the other part only depends on next or later interval.

Here we show an example of decomposition of a chop operator. Assume \(P, Q\) is already decomposed into empty parts \(PE, QE\), current clock dependent parts \(PN_i, QN_i\) and next interval dependent parts \(PX_i, QX_i\) in disjunctive normal form.

\[
P = PE \land \text{empty} \lor \bigvee_{i=0}^{k} (PN_i \land \@ PX_i) \\
Q = QE \land \text{empty} \lor \bigvee_{i=0}^{k} (QN_i \land \@ QX_i)
\]

Where \(\@\) is next operator with \text{empty} and it is called strong next. Then \(P\&Q\) is decomposed in this way.

\[
P\&Q = (PE \land Q) \lor \bigvee_{i=0}^{k} (PN_i \land \@ (PX_i \& Q))
\]

In practical tableau expansion, BDD standard form and deterministic expansion is necessary, but these are discussed in (Ref. [1, 2]).

In case of second order variable or interval variable, the value of the variable is depend on the both begin-time and end-time of the interval. Since we are working on propositional case, it looks like we can replace the value of the variable by \(T\) or \(F\). Yes, the value is \(T\) or \(F\), but the value depends on the interval (Fig. 2). So we cannot replace the second order variable with \(T\) or \(F\) as we did in classical logic.

This situation is demonstrated by an example:

\[\square (R = \text{length}(2))\]

If we replace \(R\) by \(T\) or \(F\), this example becomes unsatisfiable. But this is satisfiable if

\[\text{we instantiated } R \text{ by } \text{length}(2) \text{ or equivalent FSM.}\]

If we think \(R\) as a FSM, tableau expansion should have next form.

\[
R = (\text{empty} \land R_0) \lor \@ R_0 \\
R_n = (\text{empty} \land R_n) \lor \@ R_{n+1}
\]

\(R_n\) is \(n\)-th state of \(R\). \(R_n\) is also a second order variables. \(R_n\) is independent each other if \(n\) is different. This is because \(R_n\) has different start point and \(R\) has different truth value in different interval. Using existential quantifier on second order variable, we can write;

\[
R = (\text{empty} \land R) \lor \exists S S.
\]

During the tableau expansions, \(n\) increases infinitely. Actually \(n\) represents the interval length of \(R\). In case of a formula like \(3R\), infinitely many \(R_n\) are generated. In this way, undecidability of full 1TL or 2TTL happens in the tableau expansion.

3.1 Length Restriction and Count Restriction

The simplest stopper of the undecidability is length limit.

\[
R = \text{empty} \land R_0 \land \@ R_0 \\
R_n = \text{empty} \land R_n \land \@ R_{n+1} \text{ if } n < k \\
R_n = \text{beg}(R_n) \text{ if } n \geq k
\]

\(R\) behaves normal in less than length \(n\) interval and after the limit it is fixed to \(T\) or \(F\).

\(R_n\) is generated on every clock. But if we have only one \(R_n\), we don’t have to use specific \(n\). Any other number is also ok. We can compact the number sequence by sort and renaming. But the order of the number have
to be preserved. After renaming, \(n \) represents number of \(R_n \) in a formula. We can call this restriction count limit. The count limit is useful on a formula like this:

\[R\&T. \]

In this example, \(R_n \) increases \(n \) by 1. This generates a series like this.

\[R\&T, R_1\&T, R_2\&T, \ldots, R_n\&T \]

If we think \(R \) and \(R_1 \) are equivalent, this example is expanded to itself. Roughly speaking, in count limit method, we have no limit on one time \(R \)-eventuality.

3.2 More Complex Restrictions

But above restrictions does not work well on a formula like \(T\&R \) that is \(\Diamond R \). In this example, expanded formula has a form after \(n \) clocks;

\[R_0 \lor R_1 \lor \ldots \lor R_n \lor T\&R. \]

After \(R_n \) reaches the limit, it becomes \(T \) or \(F \). In this case, renaming of \(R_n \) becomes identity and useless. Looking at the formula carefully, we find every \(R_n \) exists only once. The meaning of this formula is not depends on the particular name of \(R_n \) and \(R_n \) is independent each other. It is possible to remove \(R_n \) from the formula. This is called singleton removal.

Here we show several restriction methods on decidable 2ITL:

- **length limit** Effects of \(R \) has time limit,
- **count limit** Number of \(R \) is limited,
- **singleton removal** Number of interrelated \(R \) is limited.

These are defined in an operational way in the tableau expansion.

Computational complexity of 2ITL verification is determined by the restriction. Local ITL verification requires exponential complexity of the length of the formula, that mostly comes from determination of expanded states. In the worst case, all combination of the sub terms have to be computed. \(R_n \) terms increase the number the sub term, as result in effect of \(2^n \). In our experience, count limit is slightly faster than length limit.

4 Execution of 2nd Order Interval Temporal Logic

In the tableau expansion based verification (Ref.[2]), a deterministic FSM is generated. This is a method of logic synthesis or program generation. In case of Local ITL, all variables are events. An execution of 2ITL is simple. Besides conditions on events variable, it also contains conditions on second order variables. The conditions depend on the restriction methods.

- **Length limit** is the most simple one. It contains two kind of events on \(R \).
- **termination** \(R \) is terminated in \(T \) or \(F \) in less than length \(n \) interval.
- **time out** the limit of \(R \) expired and results \(T \) or \(F \).

These are marks on the FSM and define FSMs for \(R \) on each clock period. It also define a trace of \(R \) in the execution.

In case of count limit, we have to consider renaming of \(R_n \). Other situation is similar to the length limit case. The renaming is assigned to each transition in the generated FSM. Using renaming information, we can find a FSM definition of \(R \) on each clock period.

4.1 Example: Length Operator and Second Order Variable

We can demonstrate the difference of length limit and count limit by using simple example:

\[R \land (R = length(10)). \]

Here we assume limit is 5. \(length(10) \) is expressed by nested strong next operator and this becomes the first state.

- **state 1** \(R \land \emptyset \)
- **state 2** \(R_1 \land \emptyset \)
- **state 3** \(R_2 \land \emptyset \)
- **state 4** \(R_3 \land \emptyset \)
- **state 5** \(R_4 \land \emptyset \)
- **state 6** \(R_5 \land \emptyset \)
- **state 7** \(\emptyset \)
- **state 8** \(\emptyset \)
- **state 9** \(\emptyset \)
- **state 10** \(\emptyset \)
- **state 11** \(\emptyset \)

In case of length limit, it is expanded in this way:

- **state 2** \(R_1 \land \emptyset \)
- **state 3** \(R_2 \land \emptyset \)
- **state 4** \(R_3 \land \emptyset \)
- **state 5** \(R_4 \land \emptyset \)
- **state 6** \(R_5 \land \emptyset \)
- **state 7** \(\emptyset \)
- **state 8** \(\emptyset \)
- **state 9** \(\emptyset \)
- **state 10** \(\emptyset \)
- **state 11** \(\emptyset \)

In case 5. \(R_5 \)'s truth value is fixed. \(R_6 \) is false entire formula is false otherwise \(\emptyset \) remains. The resulted state diagram is show in (Fig.3).
4.2 Example: Grammar Rules or Recursive Process

A 2TL formula,

\[R \land \Box (R \rightarrow ((a \land \Box R) \lor (\neg a \land b \land \text{empty}))) \]

represents a grammar rule or CCS like process. But we are using discrete time and it use \(\Box \) operator: the verifier generates rather big FSM.

\[
\text{yes} \\
1 \text{ state}
\]

\[
\text{no}
\]

\(+a\) means \(a \) is \(T \) and \(-a\) means \(a \) is \(F \).

\text{exe}(10) \text{ requests at least 10 example and it has no solution because of count limit 5. The solution should be a Regular Expression a*b, but we cannot find out the solution because of the undecidability of 2TL.}

5 Comparisons

Several methods has been developed for real-time specification.

- Timed automaton
- Process Algebra
- Higher Order Logic

- Temporal Logic

Timed automaton can be a basic model of real-time specification. Process algebra provides a program oriented syntax by recursion style. Temporal logic provides natural language like and declarative syntax of specification.

In process algebra, all processes are defined by recursions. Propositional temporal logic cannot describe recursions, but 2TL can. Chop operator’s rule is very important here. If we use LTL and Until operator, even if we use second order variable, recursive process is not expressed. But recursion is not a perfect because of our second order variable restriction.

Corresponding part of verification in process algebra is complex hierarchy of bi-simulation. Since 2TL is logic, failure set and success set is complement of each other. This corrupts the hierarchy of bi-simulation, and it is defined as temporal logic relation.

6 Future direction

Current method works well on small examples, but we cannot say it is practical. It requires huge computation to verify second order variable and the expressiveness of the variable is restricted. This is because we are concentrated on a FSM based automatic verification and easy restriction. One possible direction is to construct theorem prover on for example HOL. The other direction is to find out more practical restrictions.

References

